在高处剪刀式升降机进出时的姿势摆动和冲击力的评估(1).pdf

在高处剪叉式升降机进出时的姿势摆动和冲击力的评估【中文11660字】

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:10126785    类型:共享资源    大小:2.82MB    格式:ZIP    上传时间:2018-05-29 上传人:闰*** IP属地:河南
15
积分
关 键 词:
高处 剪叉式 升降机 进出 姿势 姿式 摆动 以及 冲击力 评估 中文
资源描述:
在高处剪叉式升降机进出时的姿势摆动和冲击力的评估【中文11660字】,高处,剪叉式,升降机,进出,姿势,姿式,摆动,以及,冲击力,评估,中文
内容简介:
【中文 11660 字】在高处剪叉式升降机进出时的姿势摆动和冲击力的评估Christopher S. Pan a,*, Sharon S. Chiou a,Tsui-Ying Kau b,Bryan M. Wimer a,Xiaopeng Ning c,Paul Keane a美国西弗吉尼亚州摩根市威洛戴尔路 1095 号 MS-G800 国家职业安全与卫生研究所安全研究部门 26505美国.美国密歇根大学质量分析学院, N. N. Ingalls,7A10,Ann Arbor,MI,48109,美国.西弗吉尼亚州,摩根市, 26506,西弗吉尼亚大学工业与管理系统工程系邮政信箱 6070 号,摘要:进入或离开高架剪叉式升降机时,工人面临着危险。在这项研究中,我们记录了来自 22 位施工人员的地面冲击力和姿势摆动,他们在不同条件下进行剪叉升降机和相邻工作表面之间的进出口:升降开口设计,水平和垂直间隙以及倾斜工作表面。当使用条形链式开口时,我们观察到更高的峰值地面剪切力,水平间隙更大,提升表面超过工作表面 0.2 m 以上,并存在倾斜的(26o)工作表面。除了垂直距离的影响不显着之外,观察到姿势摇摆也有类似的趋势。为了在升降剪叉式升降机进出时降低工作人员的滑动/绊倒/坠落风险和姿势摆动,我们建议剪式升降机配备门式开口,而不是采用棒式和链式设计。我们还建议将升力面放置在比工作面低 0.2 m 的地方,升力面和工作面之间的水平间隙应尽可能小。选择非倾斜表面进入或离开剪式升降机也是优选的,以降低风险。关键词:剪叉升降机 入口 出口 坠落 危险施工1.简介剪叉式升降机(图 1)通常在许多施工现场使用,如果使用得当,可以方便完成许多施工任务。在过去的十年中,剪叉式升降机的使用在建筑,电信和仓储等行业中显着增加。他们越来越受欢迎使得剪叉式升降机安全成为一个重要问题 scaf-folding 行业早就认识到与剪叉式升降机相关的秋季危险(Burkart 等,2004; Heath,2006; McCann,2003)。对致命职业伤害(CFOI)数据进行的一项研究发现,垂直升降降低占垂直升降死亡的 44,几乎都涉及剪叉式升降机(McCann,2003)。由国家职业安全与卫生研究所(NIOSH)进行的一项后期研究证实了剪叉式升降机坠落导致死亡人数增加的趋势,并进一步确定了可扩展性因素包括升高的高度或工作人员的垂直位置是影响健康的重要因素 72的剪叉升降机死亡(Pan et al,2007)。图 1.剪叉式升降机结构示意图(经 Skyjack Inc.许可重印)。剪叉式升降机的使用范围可达 6 至 15 米(20 至 50 英尺)。在这样高的地方,电梯和工人的稳定性是非常值得关注的。根据美国国家标准学会(ANSI)A10.29(2012)最近的草案版本,当升降平台的表面与升高的表面相邻时,工人可以在高度大于 1.8 米(6 英尺)的地方进出剪式升降机。该标准进一步规定,如果升降平台靠近升高的表面,升降平台与升降平台之间不应有大于 0.2 米(8 英寸)的垂直间隙或大于 0.35 米(14 英寸)的水平间隙相邻的表面。迄今为止,还没有关于确定垂直和水平间隙的方式的研究,以及升降平台和相邻表面之间的距离如何影响每个工作人员的姿势稳定性。在实践中,剪式升降机有时位于比 ANSI 标准(0.2 米或 8 英寸)推荐的垂直距离更大的位置。不平的表面可能会增加坠落的风险,特别是在进出行动中。在剪式升降机的进出过程中,通常遇到两种类型的不平坦表面。一种是升降平台与相邻工作表面之间的高程差异;即工作表面高于或低于剪式升降机的平台。第二种非均匀表面是倾斜表面;即相邻的工作表面相对于剪式升降机的平台倾斜。这两种情况都可能引起使用剪式升降机的重大安全问题。首先,地表海拔差异显着增加了滑倒和绊倒的风险(Brauer,2006)。其次,表面高程的决定性差异或巨大差异可能会显着增加躯干不稳定性并改变工人脚部接触(着陆)期间的地面冲击力,这也增加了摔倒的风险(Fathallah and Cotnam,1998,2000)。由于地面剪切力增加和地面压缩力减小,倾斜的工作表面引起滑动的更高风险(Zhao 等人,1987)。以前的研究表明,站立在倾斜的表面可能会降低站立稳定性(Bhattacharya 等人,2002/2003; Lin 和 Nussbaum,2012; Simeonov 等人,2003,2009),并可能导致身体姿势和下肢生物力学的变化 Mezzarane 和 Kohn,2007; Sasagawa 等,2009)。当在倾斜的表面上行走时,行走模式以及较低的生物力学机制也会改变(与在地面上行走时相比),以补偿滑倒和坠落的风险增加(Leroux 等,2002 年; McIntosh 等,2006)。最后,当在倾斜表面上执行手动任务(例如躯干弯曲和提升)时,先前的研究已经观察到改变的和不平衡的躯干生物力学响应(Bhattacharya 等人,2002/2003; Hu 等人,2013,2016; Jiang 等人,2005),受试者脊柱负荷的增加幅度(Shin 和 Mirka,2004)以及躯干稳定性降低(Wade and Davis,2009)。这些结论与澳大利亚报道的与跌倒有关的致命和非致命伤害的高发病率相一致(Wade 和 Davis,2005)。另外,缺乏定量数据来证明潜在风险可能与不适当的入口和出口技术有关,尤其是在高处。在高处测量摆动和其他姿势不稳定的措施是困难的(Bain 和 Marklin,2012)。这是文献中第一篇评估姿势摆动,斜面效应和冲击力的研究中的第一项研究,这些研究在入口/出口到升高的剪叉式升降机时进行。这项研究还展示了如何利用先进的实验设计来开发科学假设,并回应来自行业标准委员会(即 ANSI A10.29)的许多涉及安全使用剪式升降机的方法的要求。这项研究的目的是评估在海拔高度的各种入口和出口剪叉升降方法中的姿势摇摆和冲击力。研究的第一部分研究了每个工作人员姿势摆动时升降平台与相邻表面之间的垂直和水平间隙的影响。这些评估是在两种类型的剪叉式升降机入口/出口系统上进行的,称为“闸门”和“棒和链”设计。门的设计简单地让主体将门打开以便踏上平台,而酒吧和链条设计则要求主体解开链条并侧向弯曲,以便在走向平台时通过顶部导轨(图 2(a) - ( b)。研究的第二部分着重于倾斜着陆表面的影响。这个假设是人类参与者和各种进/出境条件引起的着陆表面之间的最大相互作用力是不同的,这种差异可能影响工人在高处和倾斜表面上的姿势摇摆。图 2.带有门开口(a)和杆和链条开口(b)的剪式升降机。2.方法2.1.参与者22 名男性建筑工人平均年龄为 28.510.7 岁,他们从西弗吉尼亚州北部招募了至少1 年从事剪式升降机工作的经验。他们的平均体重为 82.83.3kg(182.57.4 磅),平均身高为 1.820.08m(6.00.29ft)。所有参与者在参与该研究之前完成了健康史筛选,以确保他们在过去一年内没有头晕,震颤,前庭障碍,神经系统疾病,糖尿病,慢性背痛和摔倒的历史,导致在几天后受伤从工作。每位参与者根据 NIOSH 机构审查委员会批准的程序进行知情同意。2.2.实验室设置本研究使用市售的 5.79 米(19 英尺)电动剪式升降机(型号 SJIIIE 3219,加拿大安大略省斯凯杰克公司)。SJIIIE 3219 剪叉式升降平台有一个甲板延伸部分,一个入口和出口门,围绕其周边的护栏,以及各边的脚板(图 1)。该升降平台的长度和宽度分别为大约 0.73 和 1.6 米(29 和 64 英寸),甲板的总长度延伸到大约 2.54 米(100 英寸)。护栏由顶部和中部轨道组成,高度为 0.99 米(39 英寸)。脚板是关于 0.15 米(6 英寸)高。这种剪式升降机的总承载能力为 249.4 千克(550 磅)。主升降平台和 0.9 米(3 英尺)甲板的单独额定承载能力分别为 113.3 和 136.0 公斤(250 和 300 磅)。这些规范符合美国国家标准协会 A92.6 标准的自升式工作平台。构建测试结构(图 3(a)和(b)以容纳用于捕获与参与者脚压有关的力数据的测量装置,以从空中升降机出口。这种结构设计用于复制剪叉式升降机可以使用的工作场所中的条件,并用于捕获常规从空中升降机进入施工或其他工作台面的工人所发现的典型力数据。测试结构的一侧靠近剪式升降机,另一侧连接到夹层(2.7 米或 9 英尺高)。参与者通过爬到测试结构后部的楼梯进入夹层,然后进入测试结构和剪式升降机。测试试验完成后,参与者使用夹层和楼梯返回地面。在测试过程中(例如,在剪式升降机和测试结构之间建立安全网),每个参与者都得到了全面的防坠落危险(图 3(c)。测试结构高 2.4 米(8 英尺),由木头构成(矩形棱柱形),顶面积为 1.2 米2.1 米(47 英尺)。它被构造成在工作表面上放置一个 0.90.60.08 米(352558 / 3.5 英寸)的受力板。沿着木结构顶部的侧面建立护栏,并且结构的一侧与剪式升降机的门相邻以便进入升降机。一块力板固定在一个用螺栓固定在木结构顶部的升降台上。Bishamon 升降台(Bishamon Lift-2K; Port Washington,New York)(图 3(a)的平台表面积为 0.9 乘 1.2 m(36 乘 48 英寸),容量为 907 kg 2000 磅),可调高度为0e0.76 米(0e30 英寸)。调整升降台的高度以达到实验所需的垂直高度。在剪叉式升降平台顶部放置第二块力量板,用于在出口剪式升降机前测量参与者的基线姿势摆动。剪式举升高度始终设置在 3.04 米(10 英尺)。在每个实验条件下,使用两台三维 Kistler力板(瑞士 Winterthur 的奇石乐集团)(一台在升降台上,另一台在升降台上)测定冲击力和姿势摆动(图 3(一个)。根据奇石乐的标准校准程序,对收集到的有关地面高度的升降平台和升降台高度(在测试结构上)的数据与地面收集的数据进行比较,没有发现重大差异。图 3.实验装置的演示,包括剪叉式升降机和测试结构的侧视图(a),俯视图(b),图纸和实际照片(c)。2.3 实验条件和程序对于所有的试验,剪叉式升降机的高度设定为 3.04 米(10 英尺),并且在两个不同的日子进行两个实验会议。在 3.04 米(10 英尺)高处进行测试的理由是,在 3.04e5.79米(10 英尺 19 英尺)和 6.09 英尺 8.83 米(10 英尺)的高度范围内,83的空中升力下降,崩塌, 20e29 英尺)(Pan 等人,2007)。在实验 1 中,参与者进行了 42 次入口和 42 次出口试验,同时受到三种不同测试条件的提升类型,垂直距离和水平距离的影响。两种类型的剪叉式升降机分别用可打开进出门的门(下文称为“门”状态)和另一个在升降机侧面具有条和链条的门检查(在下文中称为“门”作为“条形和链条”条件)(图 2(a) - (b )。测试了七个不同的垂直着陆位置(距离):与升降机相同的高度(0 米); 0.1,0.2,0.3m(4,8 和 12 英寸分)下降;和 0.1,0.2,0.3 米(分别为 4,8 和 12 英寸)高于升降平台。从起降平台起的水平距离为0.17,0.35 或 0.53 米(分别为 7,14 或 21 英寸)。我们选择的垂直和水平测试距离都是基于 ANSI A10.29 草案标准(2012),在建筑中使用高空作业平台。在实验 2 中,受试者共进行了 12 次入口和 12 次出口试验,同时经历了三种不同的试验条件,垂直距离和坡度。前段描述的两种开放配置(“门”和“条和链”)之间的升降机类型不同。垂直距离在三种情况下变化:相同的垂直高度(0 m),升起表面低于相邻工作表面(-8 英寸)0.2 m,或升起表面高于相邻工作表面(8 英寸)0.2 m。工作表面的斜率在 0 或 26o(6/12 节距)处变化。该斜面对称地放置,其下边缘朝向剪式升降机。选择 6/12 坡度的坡度是因为它是使用剪式升降机的最普遍的屋顶坡度。在此实验中,工作表面和剪式升降机之间的水平距离固定在距离出口平面 0.35 米(14 英寸)处,受试者在入口和出口时需要使用护栏。水平距离反映了常见的工作条件(Kroemer 和Grandjean,1997)。每个实验的试验顺序随机分配给每个参与者,但除了随机顺序中没有包括抬升类型之外,由于从“门”变为“棒和链”的困难和时间限制 “开幕。每个入口或出口运动的着陆阶段,每个主体的姿势摆动使用压力中心(CP)记录在力盘上进行量化。 姿势摇摆是人类正常的现象。 由于姿势摇摆运动会导致身体的 CP 接近人的稳定边界,正如支架底部的外边缘所定义的那样,姿势不稳定性的可能性会增加。 在本研究中,两个变量来自 CP 偏移,并用于定量确定每个受试者的姿势稳定性:内侧(ML)方向和前后(AP)方向的姿势摇摆距离(Bhattacharya 等,2002 / 2003; Chiou 等人,2003; Pan 等人,2009)。对于出口试验(即完全离开升降机),开始时参与者静静地站在剪式举升平台内的力盘上,根据语音指令,参与者通过开口(门或栏和链条设计)和 踏上相邻的工作台面,静静地站在一个标准化的脚部位置(脚跟接触并以 30的角度),持续 30 秒。 此外,与会者被要求在视觉上集中在前壁上的一个“点”放置在他们的眼睛水平。 对于入口试验(即完全进入升降机),遵循相同的程序,但参与者从工作台通过开口到剪式升降机平台。 对于每次试验,登记在登陆面上的力量板上的合成登陆部队都被记录下来; 在安静站立的 30秒期间测量入口/出口后的参与者的姿势摆动。2.4 独立变量实验 1 中的实验的独立变量是任务(入口或出口),提升开口类型(门或杆和链),垂直距离(工作表面是-0.3m -12 英寸的垂直距离,-0.2m -8 英寸,-0.1 米-4 英寸,0 米0 英寸,0.1 米4 英寸,0.2 米8 英寸,距离提升表面 0.3 米12 英寸)和水平距离(工作表面为 0.17 米7 英寸,0.35 米14 英寸 ,或距升降平台 0.53 米21 英寸)。 实验 2 的自变量为任务(入口或出口),提升开口类型(门或杆和链),垂直距离(工作表面的垂直距离为-0.2 米-8 英寸,0 米0 英寸 ,距离电梯表面 0.2 米8 英寸)和坡度(工作表面为 0 或 26o)。2.5 相关措施检查两组因变量以评估入口和出口任务。第一组包括着陆期间垂直(Fz)内侧(Fx)和前后(Fy)方向的最大冲击力。 第二组因变量在入口和出口运动的着陆阶段表征了姿势摇摆。体位平衡的维持是一个复杂的过程,通过身体部位之间以及全身和环境之间的协调来实现。使用前后(AP)和内外侧(ML)摆动来评估姿势稳定性,其基于参与者的压力偏移中心在来自剪式升降机的入口和出口运动的着陆阶段期间确定。AP 和 ML 摆动定义为在着陆后 30 秒内前后和内外方向的摆动距离(Bhattacharya 等,2002/2003)。3.统计分析我们使用 Minitab 17(Minitab Inc.,PA,USA)进行所有数据分析。在进行任何统计检验之前,使用概率图检查正态假设。为了稳定方差,数据在适当的时候转化为自然对数,以达到统计分布的近似正态分布。我们进行了方差的一般线性模型分析(ANOVA)来评估不同实验条件对每个因变量的影响。在这种混合模型方法中,固定效应包括实验 1 的四个独立变量(任务,升力类型,垂直距离和水平距离)以及实验 2 的四个独立变量(任务,升力类型,垂直距离和斜率);随机效应包括个体参与者。在显着的相互作用效应之间进行简单的效应分析。选择具有统计显着性的因变量进行解释。对于多重比较,Tukey-Kramer 调整用于确定实验条件之间的显着差异。本研究的显着性水平(a)设定为 0.05。表格 1实验 1 的 ANOVA 结果总结。4.结果4.1 实验 1重复测量方差分析显示主效应显着影响了大多数因变量(表 1);水平距离的变化并没有显着影响 Fy 和 ML 摇摆,不同垂直距离对 AP 和 ML 摇摆的影响也不显着。更具体地说,如图 1 和 2 所示。如图 4 和图 6 所示,当使用闸门开启(对比杆和链条开启)和剪式升降机的出口(对比进入)时,观察到 AP 和 ML 方向的峰值地面剪切力(Fx 和 Fy)和摆动明显较低。然而,峰值地面垂直冲击力 Fz 观察到相反的趋势(图 5)。更大的水平距离导致峰值 Fx,Fz 和 AP 摆幅明显增大,特别是在 0.53 米(21 英寸)的间隙条件下。在 0.35 米14 英寸条件下观察到最低 ML 摇摆,但在所有三种条件(0.17 米7 英寸,0.35 米14英寸和 0.53 米21 英寸 )相对较低。最后,当剪叉升力低于工作表面时,尤其是当垂直距离差异超过 0.2 米8 英寸时,观察到明显较大的峰值地面垂直(Fz)和剪切(Fx 和Fy)力。图 4.实验 1:升力类型(a),任务(b),水平距离(c)和垂直距离(d)对剪切地面反作用力 Fx 和 Fy 的影响。注意:不同的字母和星号标记表示彼此在统计上不同的值。 酒吧表示标准错误。 (c)和( d)中的 X 轴上的数字以英寸为单位。图 5.实验 1:升力类型(a),任务(b),水平距离(c)和垂直距离(d)对压缩地面反作用力 Fz 的影响。注意:不同的字母和星号标记表示彼此在统计上不同的值。 酒吧表示标准错误。 (c)和(d)中的 X 轴上的数字以英寸为单位。图 6.实验 1:升力类型(a),任务(b),水平距离(c)和垂直距离(d)对姿势摆动的影响。注意:不同的字母和星号标记表示彼此在统计上不同的值。 酒吧表示标准错误。 (c)和( d)中的 X 轴上的数字以英寸为单位。4.2 实验 2实验 2 的结果表明,主要效应升力类型显着影响所有峰值地面力(Fx,Fy 和 Fz)和两个方向的摆动(表 2)。同样,斜率显着影响除垂直地面峰值 Fz 以外的所有因变量。任务显着影响 Fy 和 Fz 以及垂直距离,显着影响峰值地面剪切力 Fx 和峰值垂直地面力 Fz。更具体地说,使用门开口(与杆和链开口)和工作表面(与 26 度倾斜的工作表面)相比,导致峰 Fx,Fy(图 7)以及 AP 和 ML 摇摆图 9),但当使用浇口时观察到更高的峰值 Fz(图8)。当剪叉升降机低于工作表面时,观察到明显更高的 Fx 和 Fz 峰值。最后,从升降机出口产生显着较大的 Fy。从图 7(e)中,我们可以观察到任务与斜率对 Fy 的明显交互作用。这种现象主要是由于在降落在倾斜表面上时在 AP 方向产生了更高的峰值地面剪切力。出于同样的原因,在出口处观察到较小的峰值地面垂直力 Fz(图 8(b)。表 2 实验 2 的方差分析结果总结。Applied Ergonomics 65 (2017) 152e162Evaluation of postural sway and impact forces during ingress and egress of scissor lifts at elevationsChristopher S. Pan a, *, Sharon S. Chiou a, Tsui-Ying Kau b, Bryan M. Wimer a,Xiaopeng Ning c, Paul Keane aa Division of Safety Research, National Institute for Occupational Safety and Health, 1095 Willowdale Rd., MS-G800, Morgantown, WV, 26505, USAb Quality Analytics, University of Michigan, 300 N. Ingalls, Rm 7A10, Ann Arbor, MI, 48109, USAc Industrial and Management Systems Engineering Department, West Virginia University, PO Box 6070, Morgantown, WV, 26506, USAa r t i c l e i n f oArticle history:Received 10 February 2017 Received in revised form 13 June 2017Accepted 14 June 2017Available online 22 June 2017Keywords: Scissor lifts Ingress EgressFall hazard Constructiona b s t r a c t Workers are at risk when entering (ingress) or exiting (egress) elevated scissor lifts. In this study, we recorded ground impact forces and postural sway from 22 construction workers while they performed ingress and egress between a scissor lift and an adjacent work surface with varying conditions: lift opening designs, horizontal and vertical gaps, and sloped work surfaces. W e observed higher peak ground shear forces when using a bar-and-chain opening, with larger horizontal gap, with the lift surface more than 0.2 m below the work surface, and presence of a sloped (26 o) work surface. Similar trends were observed for postural sway, except that the inuence of vertical distance was not signi cant. To reduce slip/trip/fall risk and postural sway of workers while ingress or egress of an elevated scissor lift, we suggest scissor lifts be equipped with a gate-type opening instead of a bar-and-chain design. W e also suggest the lift surface be placed no more than 0.2 m lower than the work surface and the horizontal gap between lift and work surfaces be as small as possible. Selecting a non-sloped surface to ingress or egress a scissor lift is also preferred to reduce risk.Published by Elsevier Ltd.1. IntroductionScissor lifts (Fig. 1) are commonly found at many construction sites, and when used properly they can facilitate completion of many construction tasks. Over the past decade, the use of scissor lifts has increased signi cantly in industries such as construction, telecommunication, and warehousing and storage. Their growing popularity makes scissor lift safety an important issue. The scaf- folding industry has long recognized fall hazards associated with work on scissor lifts (Burkart et al., 2004; Heath, 2006; McCann, 2003 ). A study of the Census of Fatal Occupational Injuries (CFOI) data found that falls from vertical lifts accounted for 44% of vertical- lift deaths, almost all involving scissor lifts (McCann, 2003 ). A later study conducted by the National Institute for Occupational Safety and Health (NIOSH) conrmed the increasing trend for fatalities associated with falls from scissor lifts and further identi ed that extensibility factors dthe extended height of the lift or the vertical* Corresponding author.E-mail address: cpan (C.S. Pan).position of the worker dwere signi cant contributing factors to 72% of scissor lift fatalities (Pan et al., 2007 ).Scissor lifts are available that can reach between 6 and 15 m (20 and 50 ft). At such heights, the stability of the lift and worker are of great concern. According to the recent draft version of American National Standards Institute (ANSI) A10.29 (2012), workers may enter and exit scissor lifts at heights greater than 1.8 m (6 ft) when the lift platform surface is adjacent to the elevated surface. The standard further speci es that if the lift platform is adjacent to the elevated surface, there shall not be a vertical gap larger than 0.2 m (8 inches) or a horizontal gap larger than 0.35 m (14 inches) be- tween the lift platform and the adjacent surface. To date, there has been no scienti c study on the manner in which the vertical and horizontal gaps were determined and how the distances between the lift platform and the adjacent surface may affect each workers postural stability. In practice, scissor lifts are sometimes positioned at a vertical distance greater than that recommended by the ANSI standard (0.2 m or 8 inches).Uneven surfaces can increase the risk of falling, especially dur- ing ingress and egress actions. Two types of uneven surfaces are typically encountered during the ingress and egress of a scissor lift./10.1016/j.apergo.2017.06.009 0003-6870/Published by Elsevier Ltd.Contents lists available at ScienceDirectApplied Ergonomicsjournal homepage: /locate/apergo C.S. Pan et al. / Applied Ergonomics 65 (2017) 152e162 153Fig. 1. A demonstration of the structure of scissor lifts (reprinted with permission of Skyjack Inc.).One is the difference in elevation between the lift platform and the adjacent work surface; namely, the work surface is either higher or lower than the platform of the scissor lift. The second type of un- even surface is an inclined surface; namely, the adjacent work surface is sloped compared to the platform of the scissor lift. Both conditions can introduce signi cant safety concerns for the use of scissor lifts. First of all, a difference in surface elevation signi cantly increases the risk of slip and trip (Brauer, 2006 ). Second, a decided or large difference in surface elevations could signi cantly increase trunk instability and alter ground impact forces during worker foot contact (landing), which also increases the risk of falling (Fathallah and Cotnam, 1998, 2000 ). An inclined work surface introduces a higher risk of slipping due to increased ground shear forces and reduced ground compression forces (Zhao et al., 1987 ). Previous studies have shown that standing on inclined surfaces could reduce standing stability (Bhattacharya et al., 2002/2003; Lin and Nussbaum, 2012; Simeonov et al., 2003, 2009 ) and may cause changes to body postures and lower extremity biomechanics (Mezzarane and Kohn, 2007; Sasagawa et al., 2009 ). When walking on inclined surfaces, the pattern of walking as well as lower ex- tremity biomechanics will also be altered (in comparison to walking on at ground) in order to compensate for the increased risk of slip and fall (Leroux et al., 2002; McIntosh et al., 2006 ). Finally, when performing manual tasks (such as trunk bending and lifting) on inclined surfaces, previous studies have observed altered and unbalanced trunk biomechanical responses (Bhattacharya et al., 2002/2003; Hu et al., 2013, 2016; Jiang et al., 2005 ), increased magnitude of spinal loading (Shin and Mirka, 2004 ), and reduced trunk stability (Wade and Davis, 2009 ) among testing participants. These conclusions are consistent with the high inci- dence rate of fall-related fatal and nonfatal injuries reported in the roong industry (Wade and Davis, 2005 ).Additionally, there is a lack of quantitative data to demonstratethat potential risks may be associated with improper ingress and egress techniques, especially at heights. Measuring sway and other measures of postural instability at heights is difcult (Bain and Marklin, 2012). This is the rst study in the literature to evaluate postural sway, effect of inclined surface, and impact force during ingress/egress to an elevated device da scissor lift. This study also demonstrates how advanced experimental design can be used to develop scienti c hypotheses, and responds to numerous requests from an industry-wide standards committee (i.e., ANSI A10.29) for methods that involve the safe use of a scissor lift.The objective of this study was to evaluate postural sway and impact forces during various methods of ingress and egress scissor lifts at elevation. The rst part of the study examined the effects of vertical and horizontal gaps between the lift platform and the adjacent surface on each workers postural sway. These were evaluated on two types of scissor lift ingress/egress systems, known as “gate ” and “bar and chain ” designs. The gate design simply had subjects push a gate open to step onto the platform, whereas the bar and chain design challenged subjects to unhook the chain and bend laterally to pass a top rail while stepping toward the platform (Fig. 2(a)-(b). The second part of the study focused on the effect of an inclined landing surface. The hypothesis was that the maximum interaction forces between human participants and landing sur- faces resulting from various ingress/egress conditions are different and such differences can affect workers postural sway at elevations and on inclined surfaces.2. Methods2.1. ParticipantsTwenty-two male construction workers, mean age of 28.5 10.7 years, who had at least 1 year of experience working with scissor lifts were recruited from northern West Virginia. Their mean body weight was 82.8 3.3 kg (182.5 7.4 lbs), and mean body height was 1.82 0.08 m (6.0 0.29 ft). All participants completed a health-history screening before participating in the study to ensure they were free of a history of dizziness, tremor, vestibular disorders, neurological disorders, diabetes, chronic back pain, and falls within the past year resulting in injury with days away from work. Each participant gave informed consent according to the procedures approved by the NIOSH Institutional Review Board.2.2. Laboratory setupA commercially available 5.79 m (19 ft) electric scissor lift (Model SJIIIE 3219, Skyjack, Inc, Ontario, Canada) was used for the study. The SJIIIE 3219 scissor lift platform has a deck extension, a gate for ingress and egress, guardrails around its periphery, as well as toeboards on all sides (Fig. 1). This lift platform has a length and a width of approximately 0.73 and 1.6 m (29 and 64 inches), respectively, and a deck to extend overall length to approximately2.54 m (100 inches). The guardrails, composed of a toprail and a midrail, have a height of 0.99 m (39 inches). The toeboard is about0.15 m (6 inches) high. This type of scissor lift has a total load- bearing capacity of 249.4 kg (550 lbs). The separate rated load- bearing capacity on the main lift platform and 0.9-m (3-ft) deck are 113.3 and 136.0 kg (250 and 300 lbs), respectively. These speci cations conform to ANSI standard A92.6 for Self-Propelled Elevating Work Platforms.A test structure (Fig. 3(a) and (b) was constructed to house measurement devices for capturing force data related to foot pressure from participants egress the aerial lift. This structure was designed to duplicate conditions found in worksites to be accessed by scissor lifts and served to capture force data typical of that found154 C.S. Pan et al. / Applied Ergonomics 65 (2017) 152e162Fig. 2. Scissor lifts with a gate opening (a) and a bar and chain opening (b).for workers who routinely step from aerial lifts onto construction or other work surfaces. One side of the test structure was adjacent to the scissor lift while the other side was connected to a mezzanine (2.7 m or 9 feet height). The participant accessed the mezzanine by climbing stairs at the rear of the test structure, then entered the test structure and the scissor lift. After the testing trials were completed, participants used the mezzanine and stairs to return to the ground oor. Each participant was protected from fall hazards comprehensively during the testing (e.g., safety net was con- structed between the scissor lift and the test structure) (Fig. 3(c). The test structure was 2.4 m (8 ft) tall, constructed of wood (in the shape of rectangular prism), with a top surface area of 1.2 by2.1 m (4 by 7 ft). It was constructed to house a force plate 0.9 by 0.6 by 0.08 m (35 by 255/8 by 3 inches) level with the work surface. Guardrails were established along the sides of the top of the wood structure and one side of the structure was adjacent to the gate of the scissor lift for access to the lift. A force plate was secured to a lifttable that was bolted to the top of the wood structure. The Bisha- mon lift table (Bishamon Lift-2K ; Port Washington, New York) (Fig. 3(a) had a platform surface area of 0.9 by 1.2 m (36 by 48inches), a capacity of 907 kg (2000 lbs), and an adjustable height of 0e0.76 m (0e30 inches). The height of the lift table was adjusted to achieve the desired vertical height for the experiment. A second force plate was placed on the top of the scissor lift platform for measuring the participants baseline postural sway before egress the scissor lift. The scissor lift height was set at 3.04 m (10 ft) at all times.Two three-dimensional Kistler force plates (Kistler Group, Winterthur, Switzerland), one on the lift platform and one on the lift table, were used to determine the impact forces and postural sway in each of the experimental conditions (Fig. 3(a). Following standard calibration procedures for the Kistler, a comparison with data collected on the height of both the lift platform and lift table (on the test structure) with the data collected on the ground level was performed, and no signi cant differences were identi ed.2.3. Experimental conditions and proceduresThe height of the scissor lift was set at 3.04 m (10 ft) for all trials, and two experimental sessions were conducted on two different days. The rationale for testing at the 3.04-m (10-ft) height was that 83% of aerial lift falls, collapses, and tipovers occurred within the height categories of 3.04 e5.79 m (10e19 ft) and 6.09 e8.83 m (20 e29 ft) (Pan et al., 2007 ).In Experiment 1, participants performed 42 ingress and 42 egress trials while subject to three varying test conditions dlift type, vertical distance, and horizontal distance. Two types of scissor lifts were examined done with a gate that could be opened for ingress or egress (hereinafter referred to as the “gate ” condition) and the other with a bar and a chain on the side of the lift (here- inafter referred to as the “bar and chain ” condition) (Fig. 2(a)-(b). Seven different vertical landing positions (distance) were tested: same height as the lift (0 m); 0.1, 0.2, 0.3 m (4, 8, and 12 inchesrespectively) lower; and 0.1, 0.2, 0.3 m (4, 8, and 12 inches respectively) higher than the lift platform. The horizontal distance from the landing surface was 0.17, 0.35, or 0.53 m (7, 14, or 21 inches respectively) from the lift platform. Both the vertical and horizontal test distances we selected were based on the ANSI A10.29 draft standard (2012) for using aerial platforms in construction.In Experiment 2, participants were tested for a total of 12 ingress and 12 egress trials while subjected to three varying test con- ditions dlift type, vertical distance, and slope. The lift types varied between the two opening congurations (“gate ” and “bar and chain ”) described in the preceding paragraph. The vertical distance varied among three conditions: the same vertical height (0 m), the lift surface 0.2 m lower than the adjacent work surface ( -8 inches), or the lift surface 0.2 m higher than the adjacent work surface (8 inches). The slope of the work surface was varied at either 0 or 26o (6/
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:在高处剪叉式升降机进出时的姿势摆动和冲击力的评估【中文11660字】
链接地址:https://www.renrendoc.com/p-10126785.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!