闷盖.dwg
闷盖.dwg

5吨三速电动葫芦的设计【4张图纸】【优秀】

收藏

压缩包内文档预览:
预览图
编号:271190    类型:共享资源    大小:1.22MB    格式:RAR    上传时间:2014-04-02 上传人:上*** IP属地:江苏
50
积分
关 键 词:
5吨 三速 电动葫芦 的设计
资源描述:

5吨三速电动葫芦的设计

31页 9700字数+说明书+外文翻译+4张CAD图纸

5吨三速电动葫芦的设计说明书.doc

外文翻译--轴和齿轮的设计及应用.doc

总装图.dwg

葫芦减速器.dwg

论文.doc

轴承盖.dwg

闷盖.dwg


目  录


1 绪论1

1.1引言1

1.2 电动葫芦生产与发展趋势1

2 设计要求1

3 设计方案2

4 电动葫芦起升机构部件的设计2

4.1 起升机构的原理分析2

4.2电动机的选择3

4.3 吊钩的设计3

4.3.1 吊钩的选择3

4.3.2吊钩的尺寸设计4

4.4 滑轮组的选择4

4.5 钢丝绳的选择和校核4

4.5.1 钢丝绳的选择5

4.5.2 计算钢丝绳所承受的最大静拉力5

4.6 卷筒的设计5

4.6.1 卷筒直径的确定5

4.6.2 卷筒长度的确定6

4.6.3 卷筒厚度的计算6

5 同轴式三级齿轮减速器的设计6

5.1 确定传动装置的总传动比和分配转动比6

5.2 计算传动装置的运动和动力参数7

5.3 传动零件的设计计算8

5.3.1 高速轴齿轮的设计计算8

5.3.2 中速级齿轮的设计计算12

5.3.3 低速级齿轮的设计计算16

5.4 轴的设计20

5.4.1 第一轴的设计计算20

5.4.2 第二轴的设计计算22

5.4.3 第三轴的设计计算23

6 第二轴的校核24

6.1 水平方向的力26

6.1.1 求水平支反力26

6.1.2 求水平方向的弯距26

6.2 垂直方向的力26

6.2.1 求垂直支反力26

6.2.2 求垂直方向的弯矩26

6.3 求总弯距26

7 减速器外壳和运行机构的选择27

8 结束语27

致谢27

参考文献28


设计要求

   根据现有市场起升负载的常用情况。本次设计的三速电动葫芦机械系统技术上要求:

   (1) 电动葫芦的最大载重为5顿,起升高度为9米。

(2) 电动葫芦的强度等级为M,工作级别为M5。

(3) 通过电机的变速实现在一个电机带动下输出3种速度

3 设计方案

   电动葫芦由起升机构和运行机构组成。起升机构包括吊钩、钢丝绳、滑轮组、电机、卷筒和减速器,是设计中的重点;运行机构为小车。

电动机通过联轴器与中间轴连接,中间轴又通过花键连接与减速器的高速轴相连,减速器的低速轴带动卷筒,吊钩等取物装置与卷绕在卷筒上的省力钢丝绳滑轮组连接起来。当电动机正反两个方向的运动传递给卷筒时,通过卷筒不同方向的旋转将钢丝绳卷入或放出,从而使吊钩与吊挂在其上的物料实现升降运动,这样,将电动机输入的旋转运动转化为吊钩的垂直上下的直线运动。常闭式制动器在通电时松闸,使机构运转;在失电情况下制动,使吊钩连同货物停止升降,并在指定位置上保持静止状态。当滑轮组升到最高极限位置时,上升极限位置限制器被触碰面动作,使吊钩停止上升。当吊载接近额定起重量时,起重量限制器及时检测出来,并给予显示,同时发出警示信号,一旦超过额定值及时切断电源,使起升机构停止运行,以保证安全。

内容简介:
学科门类: 单位代码 : 毕业设计说明书(论文)5吨三速电动葫芦的设计学生姓名所学专业 班 级 学 号 指导教师 XXXXXXXXX系二*年XX月目 录1 绪论11.1引言11.2 电动葫芦生产与发展趋势12 设计要求13 设计方案24 电动葫芦起升机构部件的设计24.1 起升机构的原理分析24.2电动机的选择34.3 吊钩的设计34.3.1 吊钩的选择34.3.2吊钩的尺寸设计44.4 滑轮组的选择44.5 钢丝绳的选择和校核44.5.1 钢丝绳的选择54.5.2 计算钢丝绳所承受的最大静拉力54.6 卷筒的设计54.6.1 卷筒直径的确定54.6.2 卷筒长度的确定64.6.3 卷筒厚度的计算65 同轴式三级齿轮减速器的设计65.1 确定传动装置的总传动比和分配转动比65.2 计算传动装置的运动和动力参数75.3 传动零件的设计计算85.3.1 高速轴齿轮的设计计算85.3.2 中速级齿轮的设计计算125.3.3 低速级齿轮的设计计算165.4 轴的设计205.4.1 第一轴的设计计算205.4.2 第二轴的设计计算225.4.3 第三轴的设计计算236 第二轴的校核246.1 水平方向的力266.1.1 求水平支反力266.1.2 求水平方向的弯距266.2 垂直方向的力266.2.1 求垂直支反力266.2.2 求垂直方向的弯矩266.3 求总弯距267 减速器外壳和运行机构的选择278 结束语27致谢27参考文献281 绪论1.1引言工程机械装备已经成为我国国民经济发展的支柱产业之一,占据世界工程机械总量第七位。工程机械发展异常迅猛,新的理念、新的技术、新的工艺不断给予工程机械新的生命力;作为企业生产不可缺少的起重机械更是如此。因此起重机械是国民生产各部门提高劳动生产率、生产过程机械化不可缺少的机械设备。故本次设计在常规电动葫芦的基础上,设计小吨位(20T及以下)运行轻便的三速电动葫芦。我国工程机械技术以及产品引进多以德国、日本、西班牙、韩国等机械装备制造先进的国家为主,通过网上查阅以及图书数据信息的收集,目前在多速电动葫芦的研究方面,还是产品应用方面都很少。就国内而言,多速电动葫芦的研究,目前发现的资料也很少,作为起重设备较大规模的以及起重基地的新乡,电动葫芦多以为单速、双速为主,均未有多速电动葫芦方面的产品,针对市场的需求,研究开发三速电动葫芦很有必要。新乡是全国起重基地,为此必须要研究开发三速电动葫芦,不断改进起重运输机械产品的性能,提高运转速度和生产能力,提高自动化水平,使制造方便可靠、新型、高效能的轻小型起重设备满足市场、生产的需要。电动葫芦结构紧凑、使用点、线结合,自重轻、体积小、维修方便、经久耐用等特点而广泛应用。现在市场上以单速、双速电动葫芦为主,多速电动葫芦比较少。以满足轻载快速、重载中速、慢速定位控制的要求。1.2 电动葫芦生产与发展趋势电动葫芦是一种产量大、使用面广的轻小型起重设备。我国目前生产、使用的电动葫芦绝大多数是 1963年联合设计的 CD/MD 型 ,此外还少量生产、使用 AS型和TV型电动葫芦。就其设计质量的综合评价 ,是不尽如人意的。电动葫芦更新换代慢 ,开发周期长 ,产品标准化、通用化水平不高 ,生产准备工作量大 ,投产上市速度慢的机械设备。因此缩短设计生产周期、提高设备的利用效率向多用途、高效率的方向发展。2 设计要求根据现有市场起升负载的常用情况。本次设计的三速电动葫芦机械系统技术上要求:(1) 电动葫芦的最大载重为5顿,起升高度为9米。(2) 电动葫芦的强度等级为M,工作级别为M5。(3) 通过电机的变速实现在一个电机带动下输出3种速度3 设计方案电动葫芦由起升机构和运行机构组成。起升机构包括吊钩、钢丝绳、滑轮组、电机、卷筒和减速器,是设计中的重点;运行机构为小车。电动葫芦起升机构的排列主要为电动机、减速器和卷筒装置3个部件。排列方式有平行轴a和同轴式b两种方式,见图1a b图1 起升机构部件排列图1电动机 2减速器 3卷筒装置本设计优先选用b方案,电机、减速器、卷筒布置较为合理。减速器的大齿轮和卷筒连在一起,转矩经大齿轮直接传给卷筒,使得卷筒只受弯矩而不受扭矩。其优点是机构紧凑,传动稳定,安全系数高。减速器用斜齿轮传动,载荷方向不变和齿轮传动的脉动循环,对电动机产生一个除弹簧制动的轴向力以外的载荷制动轴向力。当斜齿轮倾斜角一定时,轴向力大小与载荷成正比,起吊载荷越大,该轴向力也越大,产生的制动力矩也越大;反之亦然。它可以减小制动弹簧的轴受力,制动瞬间的冲击减小,电动机轴受扭转的冲击也将减小,尤其表现在起吊轻载荷时,提高了电动机轴的安全性。图a的结构电机与卷筒布置不再同一平面上通过减速器相连,使得减速器转矩增大。4 电动葫芦起升机构部件的设计电动葫芦起升机构用来实现物料垂直升降,是任何起重机不可缺少的部分,因而是起重机最主要、也是最基本的机构。起升机构的安全状态,是防止起重事故的关键,将直接地关系到起重作业的安全。电动葫芦起升机构包括:起升用锥形转子制动电动机、减速器、卷筒装置和吊钩装置等4个动力和传动部件。4.1 起升机构的原理分析电动机通过联轴器与中间轴连接,中间轴又通过花键连接与减速器的高速轴相连,减速器的低速轴带动卷筒,吊钩等取物装置与卷绕在卷筒上的省力钢丝绳滑轮组连接起来。当电动机正反两个方向的运动传递给卷筒时,通过卷筒不同方向的旋转将钢丝绳卷入或放出,从而使吊钩与吊挂在其上的物料实现升降运动,这样,将电动机输入的旋转运动转化为吊钩的垂直上下的直线运动。常闭式制动器在通电时松闸,使机构运转;在失电情况下制动,使吊钩连同货物停止升降,并在指定位置上保持静止状态。当滑轮组升到最高极限位置时,上升极限位置限制器被触碰面动作,使吊钩停止上升。当吊载接近额定起重量时,起重量限制器及时检测出来,并给予显示,同时发出警示信号,一旦超过额定值及时切断电源,使起升机构停止运行,以保证安全。4.2电动机的选择本次设计为5吨三速电动葫芦,电动机采用锥形转子制动电动机,电动机的型号由电气设计方面的同学给出。(见图2)电动的额定功率为7.5kw,转速为1400r/min。图2 锥形转子制动电动机4.3 吊钩的设计吊钩的设计主要包括:吊钩的选择、尺寸的设计两部分。4.3.1 吊钩的选择吊钩按制造方法可分为锻造吊钩和片式吊钩。锻造吊钩又可分为单钩和双钩。单钩一般用于小起重量,双钩多用于较大的起重量。锻造吊钩材料采用优质低碳镇静钢或低碳合金钢,如20优质低碳钢、16Mn、20MnSi、36MnSi。本次设计的是5吨的葫芦,属于起重设备的小吨位设计,结合电葫芦的生产现状和使用情况由1选用锻造单钩。4.3.2吊钩的尺寸设计单钩:吊钩钩孔直径与起重能力有一定关系:(1) (2)钩身各部分尺寸(见图3)间的关系如下:(3) (4)(5) 图3 锻造单钩计算得D=24 S=36 H=56 L1=175 L2=28对比单、双速吊钩的设计尺寸,相比并进行放大,能够满足安全要求。4.4 滑轮组的选择钢丝绳一次绕过若干定滑轮和动滑轮组成的滑轮组,可以达到省力或增速的目的。通过滑轮可以改变钢丝绳的运动方向。平衡滑轮还可以均衡张力。滑轮组的倍率大小,对驱动装置尺寸有较大的影响。为了使结构紧凑,体积小,选用滑轮组倍率m2。由1查表2-7得滑轮组效率0.994.5 钢丝绳的选择和校核钢丝绳的选择和校核包括:钢丝绳的选择、钢丝绳所受的最大静拉力、钢丝绳破断拉力。4.5.1 钢丝绳的选择钢丝绳是起重机械中最常用的构件之一,由于它具有强度高、自重轻、运动平稳、极少断裂等有点。根据现在的使用情况和参考工厂中实际使用的钢丝绳,由2表8-1-1、8-1-6查的钢丝绳型号选为6X37-15-1550-I-右。4.5.2 计算钢丝绳所承受的最大静拉力钢丝绳所承受的最大静拉力(即钢丝绳分支的最大静拉力)为:(6)式中: -额定起升载荷,指所有起升质量的重力,包括允许起升的最大有效物品、取物装置(如下滑轮组吊钩、吊梁、抓斗、容器、起重电磁铁等)、悬挂挠性件以及其 它在升降中的设备的质量的重力; Z-绕上卷筒的钢丝绳分支数,单联滑轮组Z=1,双联滑轮组Z=2; m-滑轮组倍率; -滑轮组的机械效率。其中490000N ,m2,0.99所以24.74.5.3 计算钢丝绳破断拉力计算钢丝绳破断拉力为:(7) =n式中:n-安全系数,根据机构工作级别查表确定,n5.5;=150=136所以钢丝绳满足要求。4.6 卷筒的设计卷筒是用来卷绕钢丝绳的部件,它承载起升载荷,收放钢丝绳,实现取物装置的升降。4.6.1 卷筒直径的确定卷筒的直径式卷筒集合尺寸中最关键的尺寸,其名义直径D是指光面卷筒的卷筒外包直径尺寸,由槽卷筒取槽底直径,大小按下式确定。(8)式中-按钢丝绳中心计算的最小卷筒直径,mm h-与机构工作级别和钢丝绳有关的系数,由2 8-1-54查表为18 d-钢丝绳的直径,mm 计算的270mm4.6.2 卷筒长度的确定(9)由2表8-1-53卷筒几何尺寸计算:(10) 式中L-卷筒长度,-卷筒上螺旋绳槽部分的长度,-固定钢丝绳所需要的长度,-卷筒两端多余部分的长度,P-绳槽节距, -最大起升高度,m-滑轮组倍率,-卷筒的计算直径按照卷筒长度示意图计算 450mm,54mm,30mm,L554mm4.6.3 卷筒厚度的计算对于铸钢卷筒,由2卷筒的设计计算表8-1-59查得式中-卷筒壁厚,-钢丝绳直径 所以15mm5 同轴式三级齿轮减速器的设计电动葫芦减速器是本次设计的重要部分,也是电动葫芦起升机构中的重要组成部分,所以单独进行计算。其传动关系如图4所示。图4 同轴式三级传动减速器示意图图中所涉及到的零件在下面有具体标示,在次略。5.1 确定传动装置的总传动比和分配转动比(1) 总传动比 =81.2(2)分配减速器的各级传动比:按同轴式布置。由2表15-1-3三级圆柱齿轮减速器分配传动比,查的=5.66,=3.5则低速级传动比= 4.095.2 计算传动装置的运动和动力参数计算传动装置的运动和动力参数包括:计算传动装置的运动和动力参数、传动零件的设计计算、轴的设计。(1) 各轴转速n=n=nm = 1400n=nnn=n(2)各轴输入转矩T=TdT T=T= T=TT=(3) 各轴入输功率Pd=7.5KWP=PdPd.P=P.P=P=PPP=PPP=PPP=PP5.3 传动零件的设计计算设计减速器的传动零件包括高速轴、中间轴、低速轴齿轮的设计5.3.1 高速轴齿轮的设计计算(1) 选择齿轮材料:由3表10-1选择齿轮材料为40cr,调质和表面淬火处理或氮化4855 HRC(2) 按齿面接触疲劳强度设计选择齿数取 z1=12, z2=i1z1=5.6612=68齿宽系数 由4表14-1-79,选=0.8初选螺旋角 =初选载荷系数 按齿轮非对称布置速度中等冲击载荷不大来选择Kt=1.6转距T T1=5.08104 弹性系数ZE 由4表14-1-105 ZE=189.8确定变位系数 z1=12 z2=68 a=20 h*an=h*acos由4图14-1-4查的x1=0.38 x2=-0.38节点区域系数ZH X=0 = 查4图14-1-16 ZH=2.46重合度系数Z纵向重合度0.19端面重合度由4图14-1-7查的重合度则 由4图14-1-19查得 螺旋角系数 许用接触应力接触疲劳极限由4图14-1-24查得大小齿轮的接触疲劳极限为Hlim1=Hlim2=1160应力循环次数 N1=60n1Lh=60140016300=5.29108N2=接触疲劳寿命系数由5图6.4-10查得KHN1=1.08 KHN2=1.14计算接触疲劳许用应力取失效概率为1安全系数S111.081160=12532= =1.141160=1322则(3)计算小齿轮分度圆直径d1t(11)小齿轮分度圆直径d1t=由公式11计算可得:验算圆周速度 选择精度等级 根据圆周速度由56.4-19、6.4-20选择齿轮精度等级为7级(4)计算齿宽b及模数mntb= (5) 计算载荷系数K使用系数 由4表14-1-81KA=1.25动载系数KV 根据圆周速度v=1.88由4查图14-1-14 KV1.09齿间载荷分配系数 根据由5图6.4-3查得=1.20齿间载荷分配系数K 由4表14-1-99齿轮装配时检验调整 K1.05+0.26(1+0.6)+0.1610-3b 1.05+0.26(1+0.60.82)0.82+0.1610-322.54=1.28载荷系数K KKA KVK=1.251.091.201.28=2.09修正小齿轮直径 计算模数mn mn=(6)按齿根弯曲疲劳强度设计(12)计算载荷载荷系数K 由 K1.28 由3图10-13查得=1.28K= KA KV=1.251.091.201.15=1.88齿轮的弯曲疲劳强度极 由4图15-1-53查得齿形系数 由当量齿数 zz由4图14-1-47 应力修正系数由4图14-1-47 重合度系数由4表14-1-114查得 = cos=螺旋角系数 由4图14-1-49根据 查得0.98尺寸系数 由4表14-1-119的公式 5时,取=5 =2弯曲寿命系数 根据N1=5.29108 N2=9.35107由5图6.4-11查得 计算许用弯曲疲劳应力 取弯曲疲劳安全系数 S=1.41=2计算大、小齿轮的并加以比较=小齿轮的数值较大由公式12计算可得:对比计算结果,由齿面接触疲劳强度计算的法面模数mn与由齿根弯曲疲劳强度计算的法面模数相差不大,取标准值mn2.5,取分度圆直径d1=30.30则 ,取 (7) 几何尺寸计算计算中心距将中心距圆整为105。按圆整后的中心距修正螺旋角因值改变不多,故参数等不必修正。计算大、小齿轮的分度圆直径计算齿轮宽度圆整后取; 。5.3.2 中速级齿轮的设计计算(1)选择齿轮材料:由3表10-1选择齿轮材料为40cr,调质和表面淬火处理或氮化4855 HRC(2) 按齿面接触疲劳强度设计选择齿数取 z1=12, z2=i1z1=3.512=42齿宽系数 由4表14-1-79,选=0.8初选螺旋角 =初选载荷系数K 选择Kt=1.6按齿轮非对称布置速度中等冲击载荷不大来选择转距T T=2.7105弹性系数ZE 由4表14-1-105 ZE=189.8确定变位系数 z1=12 z2=42 a=20 h*an=h*acos由4图14-1-4查的x1=0.38 x2=-0.38节点区域系数ZH X=0 = 查4图14-1-16 ZH=2.46重合度系数Z纵向重合度 0.19端面重合度 由4图14-1-7查得重合度则 由4图14-1-19查得由螺旋角系数许用接触应力接触疲劳极限由4图14-1-24查得大小齿轮的接触疲劳极限为Hlim1=Hlim2=1160应力循环次数N1=60n1Lh=60247.3516300=9.35107N2=接触疲劳寿命系数由图56.4-10查得 KHN1=1.19 KHN2=1.15计算接触疲劳许用应力取失效概率为1安全系数S111.191160=13802= =1.151160=1344 则 (3) 计算小齿轮分度圆直径d1t小齿轮分度圆直径d1t=由公式11计算可得:验算圆周速度 选择精度等级 根据圆周速度由56.4-19、6.4-20选择齿轮精度等级为7级(4)计算齿宽b及模数mntb= mnt (5) 计算载荷系数K使用系数 由4表14-1-81KA=1.25动载系数KV 根据圆周速度v=0.6由4图14-1-14 KV1.05齿间载荷分配系数 根据由5图6.4-3查得=1.10齿间载荷分配系数K 由4表14-1-99齿轮装配时检验调整 K1.05+0.26(1+0.6)+0.1610-3b 1.05+0.26(1+0.60.82)0.82+0.1610-334.26=1.28载荷系数K KKA KVK=1.251.051.101.28=1.85修正小齿轮直径 计算模数mnt (6) 按齿根弯曲疲劳强度设计 计算载荷载荷系数K 由 K1.28 由4图10-13查得=1.22K= KA KV=1.251.051.101.22=1.76齿轮的弯曲疲劳强度极 由4图15-1-53查得齿形系数 由当量齿数 z z由4图14-1-47 应力修正系数由4图14-1-47 重合度系数由4表14-1-114查得cos= = 螺旋角系数 由4图14-1-49根据 查得0.98尺寸系数 由4表14-1-119的公式 5时,取=5 =2 弯曲寿命系数 根据N1=5.29108 N2=9.35107由5图6.4-11查得 计算许用弯曲疲劳应力 取弯曲疲劳安全系数 S=1.4 1=2计算大、小齿轮的并加以比较=小齿轮的数值较大由公式12计算可得: 对比计算结果,由齿面接触疲劳强度计算的法面模数mn与由齿根弯曲疲劳强度计算的法面模数相差不大,取标准值mn4.0,取分度圆直径d1=44.96则 ,则(7) 几何尺寸计算计算中心距将中心距圆整为110。按圆整后的中心距修正螺旋角 因值改变不多,故参数等不必修正。计算大、小齿轮的分度圆直径 计算齿轮宽度 圆整后取;。5.3.3 低速级齿轮的设计计算(1) 选择齿轮材料:由3表10-1选择齿轮材料为40cr,调质和表面淬火处理或氮化4855 HRC(2) 按齿面接触疲劳强度设计选择齿数取 z1=1, z2=i1z1=4.0911=45齿宽系数 由4表14-1-79,选=0.8初选螺旋角 =初选载荷系数K 选择Kt=1.6 按齿轮非对称布置速度中等冲击载荷不大来转距T T=9.2105弹性系数ZE 由4表14-1-105 ZE=189.8确定变位系数 z1=12 z2=42 a=20 h*an=h*acos由4图14-1-4查的x1=0.35 x2=-0.35节点区域系数ZH X=0 = 查4图14-1-16 ZH=2.46重合度系数Z纵向重合度 0.17端面重合度 由4图14-1-7查得重合度则 由螺旋角系数许用接触应力接触疲劳极限由4图14-1-24查得大小齿轮的接触疲劳极限为Hlim1=Hlim2=1160应力循环次数 N1=60n1Lh=6070.6716300=2.67107N2=接触疲劳寿命系数由5图6.4-10查得KHN1=1.20 KHN2=1.15计算接触疲劳许用应力取失效概率为1安全系数S111.231160=14272= =1.391160=1612 则(3) 计算小齿轮分度圆直径d1t小齿轮分度圆直径 d1t=由公式11计算可得:=验算圆周速度 选择精度等级 根据圆周速度由56.4-19、6.4-20选择齿轮精度等级为7级(4)计算齿宽b及模数mnt b= mnt (5) 计算载荷系数K使用系数 由4表14-1-81KA=1.25动载系数KV 根据圆周速度v=0.24由4图14-1-14 KV1.05齿间载荷分配系数 根据由5图6.4-3查得=1.10齿间载荷分配系数K 由4表14-1-99齿轮装配时检验调整 K1.05+0.26(1+0.6)+0.1610-3b1.05+0.26(1+0.60.82)0.82+0.1610-350.46=1.29载荷系数K KKA KVK=1.251.051.101.29=1.86修正小齿轮直径 计算模数mnt (6) 按齿根弯曲疲劳强度设计 计算载荷载荷系数K 由 K1.29 由3图10-13查得=1.25K= KA KV=1.251.051.101.25=1.80齿轮的弯曲疲劳强度极 由4图15-1-53查得齿形系数由当量齿数 z z由4图14-1-47 应力修正系数由4图14-1-47 重合度系数由4表14-1-114查得cos= = 螺旋角系数 由4图14-1-49根据 查得0尺寸系数 由4表14-1-119的公式 5时,取=5 =2弯曲寿命系数 根据N1=5.29108 N2=9.35107由5图6.4-11查得 计算许用弯曲疲劳应力 取弯曲疲劳安全系数 S=1.4 1=2计算大、小齿轮的并加以比较 = 大齿轮的数值较大由公式12计算可得: 对比计算结果,由齿面接触疲劳强度计算的法面模数mn与由齿根弯曲疲劳强度计算的法面模数相差不大,取标准值mn6.0,取分度圆直径d1=63.07则 ,则(7) 几何尺寸计算计算中心距 将中心距圆整为170。按圆整后的中心距修正螺旋角 因值改变不多,故参数等不必修正。计算大、小齿轮的分度圆直径 计算齿轮宽度 圆整后取;。5.4 轴的设计减速器轴的设计包括:第一轴、第二轴、第三轴的设计计算以及轴上零件的设计。5.4.1 第一轴的设计计算(1) 求作用载齿轮上的力因已知高速级大齿轮的分度圆直径为 (2) 初步估算轴的最小直径1) 选择轴的材料 选轴的材料为45钢,调质处理。由2根据表5-1-1查得,。由2根据表5-1-19取,于是得考虑轴端有键,轴径应增大45%,取d=28(3) 选择花键输出轴的最小直径显然是安装键处轴的直径d。为了使所选的轴直径d-=28于键相适应,故需同时选取键型号。根据d=28中系列由4表15-1-29选取Z-6-281)校核键连接的强度其主要失效行式是工作面被压溃(静强度)(14)静连接 h= 按照中等使用和制造情况,齿面经热处理查得,取 l,可取l=50 (4) 轴的结构设计拟定轴上零件的装配方案见减速器图。(5) 根据轴向定位的要求确定轴的各段直径和长度1) 根据轴向定位的要求确定轴的各段直径和长度 为满足矩形花键的轴向定位要求,轴段右端需制出一轴肩,故取段直径d-=30.键与轴配合的长度L=50 初步选择滚动轴承。因轴承主要承受径向载荷也可承受小的轴向载荷,故选用深沟球轴承。参照工作要求并依据d-=30,故选用单列深沟球轴承6206系列,其尺寸为。右端滚动轴承采用齿轮轴进行轴向定位。因齿轮的分度圆直径d=30.30,因此,取d=25.参照工作要求并依据d=25,故选用6405系列,其尺寸为 根据齿轮的直径取齿轮轴处的轴段的直径d=37.1轴承端盖的总宽的为20。根据轴承端盖的装拆及便于对轴承添加润滑脂的要求,取端盖的外端面与矩形花键的距离为76,小齿轮宽度为45,由空心轴长度为226则L=226+76+45+20=367。齿轮宽度为35,则L=35,右端轴承用轴肩定位,因此L=4。(6)轴上零件的周向定位滚动轴承与轴的轴向定位是借过渡配合来保证的,此处选轴的直径公差为m6。(7)确定轴上圆角和倒角由3表15-2,取轴端倒角为,各轴肩处的圆角半径见减速器图5.4.2 第二轴的设计计算(1) 求作用载齿轮上的力因已知大齿轮的分度圆直径为 (2) 初步估算轴的最小直径选择轴的材料 选轴的材料为45钢,调质处理。由2根据表5-1-1查得 由2根据表5-1-19,取,于是得 (3) 轴的结构设计拟定轴上零件的装配方案见减速器图。(4) 根据轴向定位的要求确定轴的各段直径和长度1) 初步选择滚动轴承。因轴承主要承受径向载荷也可承受小的轴向载荷,故选用深沟球轴承。参照工作要求并依据最小值径d=35,故选用单列深沟球轴承6407系列,其尺寸为。则右端采用同样型号的滚动轴承支撑。2) 滚动轴承的左端采用齿轮轴的轴肩轴向定位。取L25,则齿轮的右端有一轴轴肩高度取h7,则轴环的直径d49。轴环宽度b,取L=12。齿轮的齿顶圆直径为59,则d59,因为齿轮轮毂宽度为45,则L=45。齿轮的左边采用轴肩进行定位,轴肩高度取h=7,则轴环的直径d45。轴环宽度b,取L12.3) 取安装齿轮处的轴段直径d=35,右齿轮与右端滚动轴承之间采用套筒进行轴向定位。已知齿轮轮毂的宽度30,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取L=26.(5) 轴上零件的周向定位齿轮与轴的周向定位均采用平键连接。按d由手册查得平键截面(GB/T1096-1979),键槽用键槽铣刀加工,长为22(标准键长见GB/T1096-1979),同时为了保证齿轮与轴配合有良好的对中性,故选用齿轮毂与轴的配合为H7/n6;滚动轴承与轴的轴向定位是借过渡配合来保证的,此处选轴的直径公差为m6.(6) 确定轴上圆角和倒角由3表15-2,取轴端倒角为,各轴肩处的圆角半径见减速器图。 5.4.3 第三轴的设计计算(1) 求作用载齿轮上的力因已知大齿轮的分度圆直径为 (2) 初步估算轴的最小直径选择轴的材料 选轴的材料为45钢,调质处理。由2根据表5-1-1查得 由2根据表5-1-19,取A0=110,于是得 (3) 轴的结构设计拟定轴上零件的装配方案见减速器图。(4) 根据轴向定位的要求确定轴的各段直径和长度1) 初步选择滚动轴承。因轴承只能承受径向载荷,因采用游动支撑故选用圆柱滚子轴承。参照工作要求并依据最小值径d=55,故选用内圈有单挡边的NJ210E系列,其尺寸为。则L18。2) 左端齿轮与左端轴承之间采用轴肩定位。轴肩高度取h4,则轴环的直径d63。轴环宽度b,取L=8。安装左端齿轮的直径为65,则d60,因为齿轮轮毂宽度为60,则L=45。齿轮的左边采用轴肩进行定位,轴肩高度取h=4,则轴环的直径d63。轴环宽度b,为防止低速轴大齿轮与中间轴发生干取L24.3) 取安装齿轮处的轴段直径d=55,右齿轮与右端滚动轴承之间采用套筒进行轴向定位。已知齿轮轮毂的宽度40,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取L=38. 右端滚动轴承采用轴肩进行轴向定位,轴肩高度取h=8,则轴环的直径d39。轴环宽度b,为防止齿轮之间发生干涉取L35.4) 因右端轴采用固定支撑需用滚动轴承,根据d39,则选择d35。因轴承主要承受径向载荷也可承受小的轴向载荷,故选用深沟球轴承。参照工作要求并依据值径d=35,故选用单列深沟球轴承6407系列,其尺寸为(5) 轴上零件的周向定位齿轮与轴的周向定位均采用平键连接。按d由手册查得平键截面(GB/T1096-1979),键槽用键槽铣刀加工,长为36(标准键长见GB/T1096-1979),同时为了保证齿轮与轴配合有良好的对中性,故选用齿轮毂与轴的配合为H7/n6;滚动轴承与轴的轴向定位是借过渡配合来保证的,滚动轴承与轴的轴向定位是借过渡配合来保证的,此处选轴的直径公差为m6.(6) 确定轴上圆角和倒角由3表15-2,取轴端倒角为,各轴肩处的圆角半径见减速器图。6 第二轴的校核根据各轴承受的载荷利用材料力学对第二轴进行校核。根据轴的结构图作出轴的载荷分析图5。轴的校核包括:水平方向力的计算、垂直方向力的计算、总弯矩的计算、按弯扭合成应力校核轴的计算。图5轴的载荷分析图6.1 水平方向的力水平方向的力包括:水平支反力、水平方向的弯矩。6.1.1 求水平支反力6.1.2 求水平方向的弯距6.2 垂直方向的力垂直方向的力包括:垂直支反力、垂直方向的弯矩。6.2.1 求垂直支反力6.2.2 求垂直方向的弯矩6.3 求总弯距根据校核理论应在以上基础上,针对水平方向的弯矩、垂直方向的弯矩计算总弯矩。则的数值较大。6.4 按弯扭合成应力校核轴的强度进行校核时,通常只校核轴上承受最大弯矩和扭矩的截面(即危险截面基准面2)的强度。由表中数值,并取a=0.6,轴的计算应力前已选定轴的材料为45钢,由2根据表5-1-1查得。因此,故安全。7 减速器外壳和运行机构的选择减速器外壳采用铸造外壳不是设计的重点,因与二级同轴式传动减速器外形差别不大,故在次借用。运行机构在此次设计中不作为重点,运行小车的电机和减速器均采用现有的成品,在此不在单独设计。8 结束语本问研究的用于中载小吨位的电动葫芦 具有以下特点:(1)三速电动葫芦运行速度比市场现有的电动葫芦更能满足用户的需求。(2)吊具具有很大的质量和很高的势能,被搬运的物料范围广泛。(3)起重作业范围大,电动葫芦和桥式起重机组成多种运动。速度多变的可传动零件,形成起重机械的危险点多且分散的特点,使危险的影响范围加大。(4)作业条件复杂多变。致谢本课题是在指导老师的悉心指导下完成的。在整个研究过程中,指导老师具有严谨的治学态度,丰富的实践经验,在治学及做人方面使我受益匪浅,在次衷心感谢老师对我的关心指导和帮助。同时也感谢本组同学在我做课题的过程中给予我的巨大帮助和鼓励。还要特别感谢本班的一些同学在我写论文期间给我提出的宝贵意见和关心支持。在此,对导师给我提供的良好学习和实验环境致以真诚的谢意!参考文献1黄大巍,李风,毛文杰.现代起重机械M.北京:化学工业出版社,20062成大先.机械设计手册(第一册)M.北京:化学工业出版社,20063濮良贵,纪名刚.机械设计M.北京:高等教育出版社,20054成大先.机械设计手册(第二册)M.北京:化学工业出版社,20065陈榕林.机械设计应用手册M.北京:科学技术文献出版社,19956陈道南.起重运输机械J. 北京:冶金工业出版社 ,1988 7宵立群.新一轮起重机竞争从电动葫芦开始J.起重运输机械,2006,(04)8林国湘.疲劳强度的模糊可靠性设计J.机械设计,1996(4):9119李伟,李瑞华.起重机智能控制的发展现状与思考J. 煤矿机械,200610陈等云.电动葫芦起升级构模块化设计J.起重运输机械,200311徐晓松,谢维达.异步电动机泵控软起动器的软停控制D.北京:中国电力出版社,199912HindhedaI,Uffe.Machine Design FundamentalsA Practical Approach.New York:wiley,198313Rajput R K.Element of Machanical Engineering.Katson Publ.House,198514须雷.新型DR钢丝绳电动葫芦J. 起重运输机械 , 2006,(9)15杨越兴.电动葫芦的噪声问题.起重运输机械J,1998(10):303216车荷香.齿轮传动的优化设计A.第一届全国机械优化设计学术会议论文C,198231英文原文:SHAFT AND GEAR DESIGNAbstract: The important position of the wheel gear and shaft can t falter in traditional machine and modern machines. The wheel gear and shafts mainly install the direction that delivers the dint at the principal axis box. The passing to process to make them can is divided into many model numbers, useding for many situations respectively. So we must be the multilayers to the understanding of the wheel gear and shaft in many waysKey words : Wheel gear ; ShaftIn the force analysis of spur gears, the forces are assumed to act in a single plane .We shall study gears in which the forces have three dimensions.The reason for this, in the case of helical gears, is that the teeth are not parallel to the axis of rotation. And in the case of bevel gears, the rotational axes are not parallel to each other. There are also other reasons, as we shall learn.Helical gears are used to transmit motion between parallel shafts. The helix angle is the same on each gear, but one gear must have a right-hand helix and the other a left-hand helix. The shape of the tooth is an involute helicoid. If a piece of paper cut in the shape of a parallelogram is wrapped around a cylinder, the angular edge of the paper becomes a helix. If we unwind this paper, each point on the angular edge generates an involute curve. The surface obtained when every point on the edge generates an involute is called an involute helicoid. The initial contact of spur-gear teeth is a line extending all the way across the face of the tooth. The initial contact of helical gear teeth is a point, which changes into a line as the teeth come into more engagement. In spur gears the line of contact is parallel to the axis of the rotation; in helical gears, the line is diagonal across the face of the tooth. It is this gradual of the teeth and the smooth transfer of load from one tooth to another, which give helical gears the ability to transmit heavy loads at high speeds. Helical gears subject the shaft bearings to both radial and thrust loads. When the thrust loads become high or are objectionable for other reasons, it may be desirable to use double helical gears. A double helical gear (herringbone) is equivalent to two helical gears of opposite hand, mounted side byside on the same shaft. They develop opposite thrust reactions and thus cancel out the thrust load. When two or more single helical gears are mounted on the same shaft,the hand of the gears should be selected so as to produce the minimum thrust load Crossed-helical, or spiral, gears are those in which the shaft centerlines are neither parallel nor intersecting. The teeth of crossed-helical fears have point contact with each other, which changes to line contact as the gears wear in. For this reason they will carry out very small loads and are mainly for instrumental applications, and are definitely not recommended for use in the transmission of power There is on difference between a crossed heli cal gear and a helical gear until they are mounted in mesh with each other. They are manufactured in the same way. A pair of meshed crossed helical gears usually have the same hand; that is , a right-hand driver goes with a right-hand driven. In the design of crossed-helical gears, the minimum sliding velocity is obtained when the helix angle are equal. However, when the helix angle are not equal, the gear with the larger helix angle should be used as the driver if both gears have the same handWorm gears are similar to crossed helical gears. The pinion or worm has a small number of teeth, usually one to four, and since they completely wrap around the pitch cylinder they are called threads. Its mating gear is called a worm gear, which is not a true helical gear. A worm and worm gear are used to provide a high angular-velocity reduction between nonintersecting shafts which are usually at right angle. The worm gear is not a helical gear because its face is made concave to fit the curvature of the worm in order to provide line contact instead of point contact. However, a disadvantage of worm gearing is the high sliding velocities across the teeth, the same as with crossed helical gearsWorm gearing are either single or double enveloping. A single-enveloping gearing is one in which the gear wraps around or partially encloses the worm. . A gearing in which each element partially encloses the other is, of course, a double-enveloping worm gearing. The important difference between the two is that area contact exists between the teeth of doubleenveloping gears while only line contact between those of single-enveloping gears. The worm and worm gear of a set have the same hand ofhelix as for crossed helical gears, but the helix angles are usually quite different The helix angle on the worm is generally quite large, and that on the gear very small Because of this, it is usual to specify the lead angle on the worm, which is the complement of the worm helix angle, and the helix angle on the gear; the two angles are equal for a 90-deg. Shaft angleWhen gears are to be used to transmit motion between intersecting shaft, some of bevel gear is required. Although bevel gear are usually made for a shaft angle of 90 deg. They may be produced for almost any shaft angle. The teeth may be cast, milled, or generated. Only the generated teeth may be classed as accurate. In a typical bevel gear mounting, one of the gear is often mounted outboard of the bearing. This means that shaft deflection can be more pronounced and have a greater effect on the contact of teeth. Another difficulty, which occurs in predicting the stress in bevel-gear teeth, is the fact the teeth are tapered.Straight bevel gears are easy to design and simple to manufacture and give very good results in service if they are mounted accurately and positively. As in the case of squr gears, however, they become noisy at higher values of the pitch-line velocity In these cases it is often go od design practice to go to the spiral bevel gear, which is the bevel counterpart of the helical gear. As in the case of helical gears, spiral bevel gears give a much smoother tooth action than straight bevel gears, and hence are useful where high speed are encountered. It is frequently desirable, as in the case of automotive differential applications, to have gearing similar to bevel gears but with the shaft offset. Such gears are called hypoid gears because their pitch surfaces are hyperboloids of revolution The tooth action between such gears is a combination of rolling and sliding alonga straight line and has much in common with that of worm gears A shaft is a rotating or stationary member, usually of circular cross section, having mounted upon it such elementsas gears, pulleys, flywheels, cranks, sprockets, and other power-transmission elements. Shaft may be subjected to bending, tension, compression, or torsional loads, acting singly or in combination with one another. When they are combined, one may expect to find both static and fatigue strength tobe important design considerations, since a single shaft may be subjected to static stresses, completely reversed, and repeated stresses, all acting at the same time The word shaft covers numerous variations, such as axles and spindles. Anaxle is a shaft, wither stationary or rotating, nor subjected to torsion load. A shirt rotating shaft is often called a spindle. When either the lateral or the torsional deflection of a shaft must be held to close limits, the shaft must be sized on the basis of deflection before analyzing the stresses. The reason for this is that, if the shaft is made stiff enough so that the deflection is not too large, it is probable that the resulting stresses will be safe. But by no means should the designer assume that they are safe; it is almost always necessary to calculate them so that he knows they are within acceptable limits Whenever possible, the power-transruission elements, such as gears or pullets, should be located close to the supporting bearings, This reduces the bending moment, and hence the deflection and bending stress.Although the von Mises-Hencky-Goodman method is difficult to use in design of shaft, it probably comes closest to predicting actual failure. Thus it is a good way of checking a shaft that has already been designed or of discovering why a particular shaft has failed in service. Furthermore, there are a considerable number of shaft-design problems in which the dimension are pretty well limited by other considerations, such as rigidity, and it is only necessary for the designer to discover something about the fillet sizes, heat-treatment, and surface finish and whether or not shot peening is necessary in order to achieve the required life and reliabilityBecause of the similarity of their functions, clutches and brakes are treated together. In a simplified dynamic representation of a friction clutch, or brake two in ertias 11 and 12 traveling at the respective angular velocities Wl and W2, one of which may be zero in the case of brake, are to be brought to the same speed by engaging the clutch or brake. Slippage occurs because the two elements are running at different speeds and energy is dissipated during actuation, resulting in a temperature rise. In analyzing the performance of these devices we shall beinterested in the actuating force, the torque transmitted, the energy loss and the temperature rise. The torque transmitted is related to the actuating force, the coefficient of friction, and the geometry of the clutch or brake. This is problem in static, which will have to be studied separately for eath geometric configuration. However, temperature rise is related to energy loss and can be studied without regard to the type of brake or clutch because the geometry of interest is the heat-dissipating surfaces. The various types of clutches and brakes may be classified as fllows1. Rim type with internally expanding shoes2. Rim type with externally contracting shoes3。 Band type4. Disk or axial type5 Cone type6. Miscellaneous typeThe analysis of all type of friction clutches and brakes use the same general procedure. The following step are necessary1. Assume or determine the distribution of pressure on the frictional surfaces2. Find a relation between the maximum pressure and the pressure at any point3. Apply the condition of statical equilibrium to find (a) the actuating force, (b) the torque, and (c) the support reactionsMiscellaneous clutches include several types, such as the positive-contact clutches, overload-release clutches, overrunning clutches, magnetic fluid clutches, and others.A positive-contact clutch consists of a shift lever and two jaws. The greatest differences between the various types of positive clutches are concerned with the design of the jaws. To provide a longer period of time for shift action during engagement, the jaws may be ratchet-shaped, or gear-tooth-shaped. Sometimes a greatmany teeth or jaws are used, and they may be cut either circumferentially, so that they engage by cylindrical mating, or on the faces of the mating elements Although positive clutches are not used to the extent of the frictional-contact type, they do have important applications where synchronous operation is required Devices such as linear drives or motor-operated screw drivers must run to definite limit and then come to a stop. An overload-release type of clutch is required for these applications. These clutches are usually spring-loaded so as to release at a predetermined toque. The clicking sound which is heard when the overload point is reached is considered to be a desirable signal An overrunning clutch or coupling permits the driven member of a machine to freewheel or overrun because the driver is stopped or because another source of power increase the speed of the driven. This type of clutch usually uses rollers or balls mounted between an outer sleeve and an inner member having flats machined around the periphery. Driving action is obtained by wedging the rollers between the sleeve and the flats. The clutch is therefore equivalent to a pawl and ratchet with an infinite number of teeth Magnetic fluid clutch or brake is a relatively new development which has two parallel magnetic plates. Between these plates is a lubricated magnetic powder mixture. An electromagnetic coil is inserted somewhere in the magnetic circuit. By varying the excitation to this coil, the shearing strength of the magnetic fluid mixture may be accurately controlled. Thus any condition from a full slip to a frozen lockup may be obtainedIntroduciton of MachiningHave a shape as a processing method, all machining process for the production of the most commonly used and most important method. Machining process is a process generated shape, in this process, Drivers device on the workpiece material to be in the form of chip removal. Although in some occasions, the workpiece under no circumstances, the use of mobile equipment to the processing, However, the majorityof the machining is not only supporting the workpiece also supporting tools and equipment to complete. Machining know the process has two aspects. Small group of low-cost production. For casting, forging and machining pressure, every production of a specific shape of the workpiece, even a spare parts, almost have to spend the high cost of processing. Welding to rely on the shape of the structure, to a large extent, depend on effective in the form of raw materials. In general, through the use of expensive equipment and without special processing conditions, can be almost any type of raw materials, mechanical processing to convert the raw materials processed into the arbitrary shape of the structure, as long as the external dimensions large enough, it is possible. Because of a production of spare parts, even when the parts and structure of the production batch sizes are suitable for the original casting, Forging or pressure processing to produce, but usually prefer machining Strict precision and good surface finish, Machining the second purpose is the establishment of the high precision and surface finish possible on the basis of Many parts, if any other means of production belonging to the largescale production, Well Machining is a low-tolerance and can meet the requirements of small batch production. Besides, many parts on the production and processing of coarse process to improve its general shape of the surface. It is only necessary precision and choose only the surface machining. For instance, thread, in addition to mechanical processing, almost no other processing method for processing. Another example is the blacksmith pieces keyhole processing, as well as training to be conducted immediately after the mechanical completion of the processing.Primary Cutting ParametersCutting the work piece and tool based on the basic relationship between the following four elements to fully describe : the tool geometry, cutting speed, feed rate, depth and penetration of a cutting tool. Cutting Tools must be of a suitable material to manufacture, it must be strong, tough hard and wear-resistant. Tool geometry - to the tip plane and cutter angle characteristics - for each cutting process must be correct. Cutting speed is the cutting edge of work piece surface rate, it is inches per minute to show. In order to effectively processing, and cutting speed must adapt to the level of specific parts - with knives. Generally, the more hard work piece materialthe lower the rate. Progressive Tool to speed is cut into the work piece speed. If the work piece or tool for rotating movement, feed rate per round over the number of inches to the measurement. When the work piece or tool for reciprocating movement and feed rate on each trip through the measurement of inches. Generally, in other conditions, feed rate and cutting speed is inversely proportional to。 Depth of penetration of a cutting tool - to inches dollars - is the tool to the work piece distance. Rotary cutting it to the chip or equal to the width of the linear cutting chip thickness. Rough than finishing, deeper penetration of a cutting tool depth.Wears of Cutting To01We already have been processed and the rattle of the countless cracks edge tool we learn that tool wear are basically three forms : flank wear, the former flank wear and V-Notch wear. Flank wear occurred in both the main blade occurred vice blade On the main blade, shoulder removed because most metal chip mandate, which resulted in an increase cutting force and cutting temperature increase, If not allowed to check, That could lead to the work piece and the tool vibration and provide for efficient cutting conditions may no longer exist. Vicebladed on, it is determined work piece dimensions and surface finish. Flank wear size of the possible failure of the product and surface finish are also inferior. In most actual cutting conditions, as the principal in the former first deputy flank before flank wear, wear arrival enough, Tool will be effective, the results are made unqualified partsAs Tool stress on the surface uneven, chip and flank before sliding contact zone between stress, in sliding contact the start of the largest, and in contact with the tail of zero, so abrasive wear in the region occurred. This is because the card cutting edge than the nearby settlements near the more serious wear, and bladed chip due to the vicinity of the former flank and lost contact wear lighter. This resultsfrom a certain distance from the cutting edge of the surface formed before the knife point Ma pit, which is usually considered before wear. Under normal circumstances, this is wear cross-sectional shape of an arc. In many instances and for the actual cutting conditions, the former flank wear compared to flank wear light, Therefore flank wear more generally as a tool failure of scale signs. But because many authors have said in the cutting speed of the increase, Maeto surface temperature than the knife surface temperatures have risen faster. but because any form of wear rate is essentially temperature changes by the significant impact. Therefore, the former usually wear in high-speed cutting happen The main tool flank wear the tail is not processed with the work piece surface in contact, Therefore flank wear than wear along with the ends more visible, which is the most common. This is because the local effect, which is as rough on the surface has hardened layer, This effect is by cutting in front of the hardening of t he work piece. Not just cutting, and as oxidation skin, the blade local high temperature will also cause this effect. This partial wear normally referred to as pit sexual wear, but occasionally it is very serious. Despite the emergence of the pits on the Cutting Tool nature is not meaningful impact, but often pits gradually become darker If cutting continued the case, then there cutter fracture crisis If any form of sexual allowed to wear, eventually wear rate increase obviously will be a tool to destroy failure destruction, that will no longer tool for cutting, cause the work piece scrapped, it is good, can cause serious damage machine. For various carbide cutting tools and for the various types of wear, in the event of a serious lapse, on the tool that has reached the end of the life cycle. But for various high-speed steel cutting tools and wear belonging to the non-uniformity of wear, has been found : When the wear and even to allow for a serious lapse, the most meaningful is that the tool can re-mill use, of course, In practice, cutting the time to use than the short time lapse. Several phenomena are one tool serious lapse began features : the most common is the sudden increase cutting force, appeared on the work piece burning ring patterns and an increase in noise.The Effect of Changes in Cutting Parameters on Cutting TemperaturesIn metal cutting operations heat is generated in the primary and secondary deformation zones and this results in a complex temperature distribution throughoutthe tool, workpiece and chip. A typical set of isotherms is shown in figure where it can be seen that, as could be expected, there is a very large temperature gradient throughout the width of the chip as the workpiece material is sheared in primary deformation and there is a further large temperature in the chip adjacent to theface as the chip is sheared in secondary deformation. This leads to a maximum cutting temperature a short distance up the face from the cutting edge and a small distance nto the chip ince virtually all the work done in metal cutting is converted into heat, it could e expected that factors which increase the power consumed per unit volume of metal emoved will increase the cutting temperature. Thus an increase in the rake angle, ll other parameters remaining constant, will reduce the power per unit volume of etal removed and cutting temperatures will reduce. When considering increase in ndeformed chip thickness and cutting speed the situation is more comples. An ncrease in undeformed chip thickness and cutting speed the situation is more complex n increase in undeformed chip thickness tends to be a scale effect where the amounts f heat which pass to the workpiece, the tool and chip remain in fixed proportions nd the changes in cutting temperature tend to be small. Increase in cutting speed, owever, reduce the amount of heat which passes into the workpiece and this increase he temperature rise of the chip in primary deformation. Further, the secondary eformation zone tends to be smaller and this has the effect of increasing thetemperatures in this zone. Other changes in cutting parameters have virtually no ffect on the power consumed per unit volume of metal removed and consequently have irtually no effect on the power consumed per unit volume of metal removed and onsequently have virtually no effect on the cutting temperatures. Since it has been hown that even small changes in cutting temperature have a significant effect on ool wear rate, it is appropriate to indicate how cutting temperatures can be ssessed from cutting data he most direct and accurate method for measuring temperatures in high-speed-steel utting tools is that of Wright&Trent which also yields detailed information ontemperature distributions in high-speed-steel tools which relates microstructural hanges to thermal history .Trent has described measurements of cutting temperatures and temperature istributions for high-speed-steel tools when machining a wide range of workpiecematerials. This technique has been further developed by using scanning electronmicroscopy to study fine-scale microstructural changes srising from over temperingof the tempered martensitic matrix of various high-speed-steels. This technique hasalso been used to study temperature distributions in both high-speed-steel singlepoint turning tools and twist drills.Automatic Fixture DesignAssembly equipment used in the traditional synchronous fixture put parts of the ixture mobile center, to ensure that components from transmission from the plane r equipment plate placed after removal has been scheduled for position. However n certain applications, mobile mandatory parts of the center line, it may cause arts or equipment damage. When parts vulnerability and may lead to a small vibration bandoned, or when their location is by machine spindle or specific to die, Tolerance gain or when the request is a sophisticated, it would rather let the fixture toadapt to the location of parts, and not the contrary. For these tasks, Elyria, Ohio, he company has developed Zaytran a general non-functional data synchronization West ategory FLEXIBILITY fixture. Fixture because of the interaction and ynchronization devices is independent, The synchronous device can use ophisticated equipment to replace the slip without affecting the fixture force ixture specification range from 0. 2 inches itinerary, 5 pounds clamping force of he six-inch trip, 400-inch clamping force. he characteristics of modern production is becoming smaller and smaller quantities nd product specifications biggest changes. Therefore, in the final stages of roduction, assembly of production, quantity and product design changes appear to e particularly vulnerable. This situation is forcing many companies to make greater fforts to rationalize the extensive reform and the previously mentioned case of ssembly automati flexible fixture behind the rapid development of flexible transport and andling devices, such as backward in the development of industrial robots, it is till expected to increase the flexibility fixture. In fact the important fixture evices - the production of the devices to strengthen investment on the fixtureso that more flexibility in economic support holders. According to their flexibility and fixture can be divided into : special fixture, he fixture combinations, the standard fixture, high flexible fixture. Forms can transform the structure of the flexible fixture can be installed with the change of structure components (such as needle cheek plate, Multi-chip components and flake cheek plate) , a non-standard work piece gripper or clamping elements (for example : commencement standard with a clamping fixture and mobile components fixture supporting documents) , or with ceramic or hardening of the intermediary substances (such as : Mobile particle bed fixture and heat fixture tight fixture) To production, the parts were secured fixture, the need to generate clamping function, its fixture with a few unrelated to the sexual submissive steps. According to the processing was part of that foundation and working characteristics to determine the work piece fixture in the required position, then need to select some stability flat combination, These constitute a stable plane was fixed in the work piece fixture set position on the clampprofile structure, all balanced and torque, it has also ensured that the work features close to the work piece. Finally, it must be calculated and adjusted, assembly or disassembly be standard fixture components required for the position, so that the work piece firmly by clamping fixture in China. In accordance with this procedure, the outline fixture structure and equipped with the planning and recording process can be automated control Structural modeling task is to produce some stable flat combination, Thus, these plane of the work pieces clamping force and will fixture stability. According to usual practice, this task can be human-machine dialogue that is almost completely automated way to completion. A man-machine dialogue that is automated fixture structure modeling to determine the merits can be conducted in an organized and planning fixture design, reduce the amount of the design, shortening the study period and better distribution of work conditions. In short, can be successfully achieved significantly improve fixture efficiency and effectiveness. Fully prepared to structure programs and the number of material circumstances, thecompletion of the first successful assembly can save up t0 60Yo of the time.译文:轴和齿轮的设计及应用摘要:在传统机械和现代机械中齿轮和轴的重要地位是不可动摇的。齿轮和轴主要安装在主轴箱来传递力的方向。通过加工制造它们可以分为许多的型号,分别用于许多的场合。所以我们对齿轮和轴的了解和认识必须是多层次多方位的。关键词:齿轮;轴在直齿圆柱齿轮的受力分析中,是假定各力作用在单一平面的。我们将研究作用力具有三维坐标的齿轮。因此,在斜齿轮的情况下,其齿向是不平行于回转轴线的。而在锥齿轮的情况中各回转轴线互相不平行。像我们要讨论的那样,尚有其他道理需要学习,掌握。斜齿轮用于传递平行轴之间的运动。倾斜角度每个齿轮都一样,但一个必须右旋斜齿,而另一个必须是左旋斜齿。齿的形状是一溅开线螺旋面。如果一张被剪成平行四边形(矩形)的纸张包围在齿轮圆柱体上,纸上印出齿的角刃边就变成斜线。如果我展开这张纸,在血角刃边上的每一个点就发牛一渐开线曲线。直齿网柱齿轮轮齿的初始接触处是跨过整个齿面而伸展开来的线。斜齿轮轮齿的初始接触是一点,当齿进入更多的啮合时,它就变成线。在直齿网柱齿轮中,接触是平行于回转轴线的。在斜齿轮中,该先是跨过齿面的对角线。它是齿轮逐渐进行啮合并平稳的从一个卤到另一个齿传递运动,那样就使斜齿轮具有高速重载下平稳传递运动的能力。斜齿轮使轴的轴承承受径向和轴向力。当轴向推力变的大了或由于别的原因而产生某些影响时,那就可以使用人字齿轮。双斜齿轮(人字齿轮)是与反向的并排地装在同一轴上的两个斜齿轮等效。他们产生相反的轴向推力作用,这样就消除了轴向推力。当两个或更多个单向齿斜齿轮被在同一轴上时,齿轮的齿向应作选择,以便产生最小的轴向推力。交错轴斜齿轮或螺旋齿轮,他们是轴中心线既不相交也不平行。交错轴斜齿轮的齿彼此之间发生点接触,它随着齿轮的磨合而变成线接触。因此他们只能传递小的载荷和主要用于仪器设备中,而且肯定不能推荐在动力传动中使用。交错轴斜齿轮与斜齿轮之间在被安装后互相捏合之前是没有任何区别的。它们是以同样的方法进行制造。一对相啮合的交错轴斜齿轮通常具有同样的齿向,即左旋主动齿轮跟右旋从动齿轮相啮合。在交错轴斜齿设计中,当该齿的斜角相等时所产生滑移速度最小。然而当该齿的斜角不相等时,如果两个齿轮具有相同齿向的话,大斜角齿轮应用作丰动齿轮。蜗轮与交错轴斜齿轮相似。小齿轮即蜗杆具有较小的齿数,通常是一到四齿,由于它们完全缠绕在节圆柱上,因此它们被称力螺纹齿。与其相配的齿轮叫做蜗轮,蜗轮不是真正的斜齿轮。蜗杆和蜗轮通常是用于向垂直相交轴之间的传动提供大的角速度减速比。蜗轮不是斜齿轮,因为其齿顶面做成巾凹形状以适配蜗杆曲率,目的是要形成线接触而不是点接触。然而蜗杆蜗轮传动机构中存在齿间有较大滑移速度的缺点,正像交错轴斜齿轮那样。蜗杆蜗轮机构有单包围和双包围机构。单包围机构就是蜗轮包裹着蜗杆的一种机构。当然,如果每个构件各自局部地包围着对方的蜗轮机构就是双包围蜗轮蜗杆机构。着两者之间的重要区别是,在双包围蜗轮组的轮齿间有面接触,而在单包围的蜗轮组的轮齿间有线接触。一个装置中的蜗杆和蜗轮正像交错轴斜齿轮那样具有相同的齿向,但是其斜齿齿角的角度是极不相同的。蜗杆上的齿斜角度通常很大,而蜗轮上的则极小,因此习惯常规定蜗杆的导角,那就是蜗杆齿斜角的余角;也规定了蜗轮上的齿斜角,该两角之和就等于90度的轴线交角。当齿轮要用来传递相交轴之间的运动时,就需要某种形式的锥齿轮。虽然锥齿轮通常制造成能构成90度轴交角,但它们也可产牛任何角度的轴交角。轮齿可以铸出,铣制或滚切加工。仅就滚齿而言就可达一级精度。在典型的锥齿轮安装中,其中一个锥齿轮常常装于支承的外侧。这意味着轴的挠曲情况更加明显而使在轮齿接触上具有更大的影响。另外一个难题,发生在难于预示锥齿轮轮齿上的应力,实际上是由于齿轮被加工成锥状造成的。直齿锥齿轮易于设计且制造简单,如果他们安装的精密而确定,在运转中会产生良好效果。然而在直齿网柱齿轮情况下,在节线速度较高时,他们将发出噪音。在这些情况下,螺旋锥齿轮比直齿轮能产生平稳的多的啮合作用,因此碰到高速运转的场合那是很有用的。当在汽车的各种不同用途中,有一个带偏心轴的类似锥齿轮的机构,那是常常所希望的。这样的齿轮机构叫做准双曲面齿轮机构,因为它们的节面是双曲回转面。这种齿轮之间的轮齿作用是沿着一根直线上产生滚动与滑动相结合的运动并和蜗轮蜗杆的轮齿作用有着更多的共同之处。轴是一种转动或静止的杆件。通常有圆形横截面。在轴上安装像齿轮,皮带轮,飞轮,曲柄,链轮和其他动力传递零件。轴能够承受弯曲,拉伸,压缩或扭转载荷,这些力相结合时,人们期望找到静强度和疲劳强度作为设计的重要依据。因为单根轴可以承受静压力,变应力和交变应力,所有的应力作用都是同时发生的。“轴”这个词包含着多种含义,例如心轴和主轴。心轴也是轴,既可以旋转也可以静止的轴,但不承受扭转载荷。短的转动轴常常被称为主轴。当轴的弯曲或扭转变形必需被限制于很小的范围内时,其尺寸应根据变形来确定,然后进行应力分祈。因此,如若轴要做得有足够的刚度以致挠曲不太大,那么合应力符合安全要求那是完全可能的。但决不意味着设计者要保证;它们是安全的,轴几乎总是要进行计算的,知道它们是处在可以接受的允许的极限以内。因之,设计者无论何时,动力传递零件,如齿轮或皮带轮都应该设置在靠近支持轴承附近。这就减低了弯矩,因而减小变形和弯曲应力。虽然来自MHG方法在设计轴中难于应用,但它可能用来准确预示实际失效。这样,它是一个检验已经设计好了的轴的或者发现具体轴在运转中发生损坏原因的好方法。进而有着大量的关于设计的问题,其中由于别的考虑例如刚度考虑,尺寸已得到较好的限制。设计者去查找关于圆角尺寸、热处理、表面光洁度和是否要进行喷丸处理等资料,那真正的唯一的需要是实现所要求的寿命和可靠性。由于他们的功能相似,将离合器和制动器一起处理。简化摩擦离合器或制动器的动力学表达式中,各自以角速度w1和w2运动的两个转动惯量II和12,在制动器情况下其中之一可能是零,由于接上离合器或制动器而最终要导致同样的速度。因为两个构件开始以不同速度运转而使打滑发生了,并且在作用过程中能量散失,结果导致温升。在分析这些装置的性能时,我们应注意到作用力,传递的扭矩,散失的能量和温升。所传递的扭矩关系到作用力,摩擦系教和离合器或制动器的几何状况。这是一个静力学问题。这个问题将必须对每个几何机构形状分别进行研究。然而温升与能量损失有关,研究温升可能与制动器或离合器的类型无关。因为几何形状的重要性是散热表面。各种各样的离合器和制动器可作如下分类:1轮缘式内膨胀制冻块;2轮缘式外接触制动块;3条带式;4盘型或轴向式;5圆锥型;6混合式。分析摩擦离合器和制动器的各种形式都应用一般的同样的程序,下面的步骤是必需的:1假定或确定摩擦表面上压力分布;
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:5吨三速电动葫芦的设计【4张图纸】【优秀】
链接地址:https://www.renrendoc.com/p-271190.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!