浇口套.dwg
浇口套.dwg

导管注塑模具设计【带工艺卡】【18张图纸】【优秀】

收藏

压缩包内文档预览:
预览图
编号:273969    类型:共享资源    大小:1.27MB    格式:RAR    上传时间:2014-05-04 上传人:J**** IP属地:江苏
45
积分
关 键 词:
导管 注塑 模具设计 工艺 图纸
资源描述:

导管注塑模具设计

54页 25000字数+说明书+开题报告+外文翻译+18张CAD图纸

中期.doc

外文翻译--单一的塑料注塑模具浇口的优化.doc

导套.dwg

导柱.dwg

导管工艺卡片13张.dwg

导管注塑模具设计开题报告.doc

导管注塑模具设计论文.doc

导管装配图.dwg

推板.dwg

浇口套.dwg

摘  要

   注塑成型是塑件生产最常用的方法之一。本设计通过注塑模具产品,利用实体模型测量产品的尺寸,对实体进行建模,并对塑件的材料和塑件结构进行分析,并对塑件的模具进行设计,包括塑件成品的设计、工艺参数的分析与计算、工作部分的设计、模具结构的设计和加工方案的制定,确定塑件的最佳浇注位置,并通过实际情况进行调整,从而得到对实际生产来说最合理的浇注位置。在确定模具型腔数目后,分析产品的气穴、熔接痕、充填时间、充填结束时的体积温度、流动前沿处的温度、速度/时间转换点压力、充填结束时的压力、注射位置处压力等,可确定注塑模具的合理性。

   该模具采用普通浇注系统,由于采用一模两腔的注射结构,必须设置分流道,用点浇口形式从零件端部进料。

   此次设计中,最关键的是确定型芯和型腔的结构,此外还分析了模具受力,脱模机构的设计、冷却系统的设计等。


关键词:型腔;熔接痕;分流道;点浇口  


目  录

1绪论1

 1.1 塑料成型与注塑模具1

 1.2 国内外相关发展状况1

  1.2.1国内发展状况1

  1.2.2国外发展状况2

 1.3塑料模具发展走势2

2塑件材料分析与方案论证4

 2.1塑件的工艺分析4

  2.1.1塑件的材料4

  2.1.2尼龙的基本特性4

  2.1.3尼龙的成型特点4

  2.1.4尼龙的主要用途5

  2.1.5尼龙的注射成型工艺参数5

 2.2 塑件的成型工艺5

  2.2.1注射成型的原理5

  2.2.2注射成型的工艺过程6

  2.2.3注射成型工艺参数7

  2.2.4注塑模的机构组成8

 2.3方案论证8

3注射成型机的选择11

 3.1估算塑件体积11

 3.2估算塑件质量11

 3.3注塑机的注射容量11

 3.4锁模力11

 3.5选择注塑机及注塑机的主要参数12

  3.5.1注射机的选择12

  3.5.2 XS-ZY-125型注塑机的主要参数12

 3.6注塑机的校核12

4浇注系统设计14

 4.1浇注系统的功能14

  4.1.1浇注系统的组成14

  4.1.2浇注系统设计原则14

  4.1.3浇注系统布置14

 4.2 流道系统设计14

  4.2.1主流道设计15

  4.2.2冷料井设计16

  4.2.3分流道设计16

  4.2.4浇口设计17

5成型零件设计19

 5.1分型面的设计19

 5.2成型零件应具备的特能19

 5.3成型零件的结构设计20

  5.3.1凹模(型腔)结构设计20

  5.3.2型芯的结构设计20

 5.4成型零件工作尺寸计算21

  5.4.1影响塑件尺寸和精度的因素21

  5.4.2成型零件工作尺寸的计算22

  5.4.3模具型腔侧壁和底板厚度的计算23

6导向机构的设计26

 6.1导向机构的作用26

 6.2导柱导向机构26

  6.2.1导向机构的总体设计26

  6.2.2导柱的设计27

  6.2.3导套的设计27

7脱模机构的设计28

 7.1脱模机构的结构组成28

  7.1.1脱模机构的设计原则28

  7.1.2脱模机构的结构28

  7.1.3脱模机构的分类28

 7.2脱模力的计算29

 7.3简单脱模机构29

  7.3.1推件板脱模机构的设计要点29

  7.3.2推件板的形状31

  7.3.3顶杆强度的计算31

 7.4复位装置31

8侧向分型与抽芯机构设计32

 8.1侧向分型与抽芯机构的分类32

 8.2斜导柱侧向分型与抽芯机构32

  8.2.1斜导柱侧向分型与抽芯机构设计要点32

  8.2.2斜导柱侧向分型与抽芯机构的工作原理及其类型33

  8.2.3斜导柱抽心距的计算33

  8.2.4开模行程和拉杆尺寸的确定33

9温度调节系统的设计35

 9.1温度调节系统的作用35

  9.1.1温度调节系统的要求35

  9.1.2温度调节系统对塑件质量的影响35

 9.2冷却系统的机构36

  9.2.1模具冷却系统的设计原则36

  9.2.2模具冷却系统的结构36

10塑料模具用钢38

 10.1注塑模材料应具备的要求38

 10.2模具材料选用的一般原则38

 10.3本模具所选钢材及热处理38

11模具工作过程40

12模具可行性分析42

 12.1本模具的特点42

 12.2市场效益及经济效益分析42

13总结43

致谢44

参考文献45

   方案一:采用单分型面,直浇道,侧浇口,一模两腔。

   采用侧浇口,模具结构简单。

   方案二:采用双分型面,直浇道,点浇口,一模两腔。

   浇口采用点浇口,点浇口尺寸小,冷凝快,成型周期快,点浇口塑件一般不需要修正工序,因而省去了修正工序,生产率高。而且点浇口在塑件上留下的痕迹小,使塑件表面质量得到了提高。

   方案一:采用单分型面,侧浇口,虽然模具设计结构比较简单,但是塑件容易产生变形或者破坏。同时采用直接浇口,需要专门去除浇注系统产生的凝料。方案二采用双分型面,点浇口,可以自动去除浇注系统中的凝料,大大提高生产效率。经过以上两种方案综合比较,决定采用第二种方案,其模具结构草图如图2.3所示。   本文主要针对一种导管,对其进行塑料模具设计。本文介绍了注射模具国内外的发现状况及发展趋势,介绍了注射成型原理和工艺过程;根据塑件要求选择合适的注塑机,进而选择合适的浇注系统与冷却系统;通过计算,对导向机构、脱模机构和侧向分形与抽芯机构进行设计。

   该模具的采用一模两腔,结构简单、合理,改善了模具加工的工艺性,降低了模具的生产成本。型芯采用斜导柱外侧抽芯机构,解决了塑件端部侧孔的成型问题,保证了模具运动平稳可靠。采用双分型面点浇口设计,使塑件能顺利脱模,并有利于提高塑件的成型质量,大大提高生产效率。该模具总体结构设计合理,降低了模具的制造成本。成型的壳体塑件质量合格稳定,使塑件质量符合设计和使用要求。

   通过本次毕业设计让我学会了运用所学知识解决实际问题的能力,让我掌握了塑料模具设计的基本程序和方法,巩固、深化和扩展了我对所学的专业课程和专业知识,培养了我查阅和使用标准、规范、手册、图册及相关资料的能力以及计算、绘图、数据处理、计算机辅助设计等方面的能力。


内容简介:
毕业设计(论文)中期报告题目:导管注塑模具设计系 别 机电信息系 专 业 机械设计制造及其自动化 班 级 姓 名 学 号 导 师 2013年 3月 20日1、设计(论文)进展状况本次设计的塑料件为一圆筒形导管,产品特点为:端盖外表面必须光滑,且无明显浇口痕迹;导管底部有一侧抽芯。在结构设计时需考虑型芯在侧抽芯处的脱模,及模具总体结构的合理性。 图1 三维零件图 图2二维零件图1.1在开题的基础上进行了更详细的计算和设计,已优化了结构方案,进一步的完成了模具装配草图的绘制。1.2通过计算塑料件的体积及查阅相关模具设计手册完成了注塑机的选型为:XS-ZY-125型。相关参数如下: 理论注射量: 125cm3 最大注射面积:320cm2 最大模具厚度:300mm 锁模力: 900KN 最小模具厚度:200mm 定位空直径: 100mm 模板行程: 300mm 拉杆空间: 290260mm 喷嘴球半径: 12mm 喷嘴孔径: 4mm1.3确定主流道、分流道的形式和尺寸。其浇口套的尺寸如图3所示。分流道截面形状及尺寸如图4所示。图3浇口套形式与尺寸 图4 分流道截面形状1.4确定模腔数量及其排列方式、浇口形式。导管外形尺寸不大,为了我降低注射成本,根据所选注塑机的注射量,采用一模两腔的模具。为了满足较高的外观要求,确定采用点浇口。其选用的点浇口结构形式如图5所示。图5点浇口结构形式1.5计算并校核型腔部分的强度和刚度,根据导管的高度确定型腔板的侧壁厚度,型芯固定板的厚度。并确动模板、顶出板,支块厚度及其模具安装方法。1.6完成了对模具工作部分尺寸及公差进行设计计算。1.7完成了模具零件结构设计。比如:导柱、导套、拉料杆、复位杆、顶杆、滑块、推板导柱导套等等。1.8初步绘制导管的模具装配图如图6所示。图6 模具装配图1.9绘制了部分零件图。2、 存在问题及解决措施2.1没有将螺钉和弹簧进行安装和校核。解决措施:进行螺钉和弹簧的安装和校核。2.2没有考虑模具在注塑机上的安装。解决措施:查阅相关资料学习安装。2.3中间型芯的固定存在问题,未限制周向转动。解决措施:在老师的指导下,查阅了相关手册,在动模固定板和型芯的交界处安装骑缝螺钉,防止其周向转动。3、 后期工作安排9周12周:完善模具结构装配图,并完成所有零件图的绘制工作,完成模具零件的选材、工艺规程的编制。13周14周:对所有图纸进行校核,编写设计说明书,所有资料提请指导教师检查。15周:准备答辩; 指导老师签字: 年 月 日注:1、正文:宋体小四号字,行距20磅。2、中期报告装订入毕业设计(论文)附件册。Single gate optimization for plastic injection moldLI Ji-quan, LI De-qun, GUO Zhi-ying, LV Hai-yuan(Department of Plasticity Technology, Shanghai Jiao Tong University, Shanghai 200030, China) E-mail: Received Nov. 22, 2006; revision accepted Mar. 19, 2007Abstract: This paper deals with a methodology for single gate lo cation optimization for plastic injection mold. The objective of the gate optimization is to minimize the warpage of injection molded parts, because warpage is a crucial quality issue for most injection molded parts while it is influenced greatly by the gate location. Feature warpage is defined as the ratio of maximum displacement on the feature surface to the projected length of the feature surface to describe part warpage. The optimization is combined with the numerical simulation technology to find the optimal gate location, in which the simulated annealing algorithm is used to search for the optimum. Finally, an example is discussed in the paper and it can be concluded that the proposed method is effective.Key words: Injection mold, Gate location, Optimization, Feature warpage doi: 10.1631/jzus.2007.A1077 Document code: A CLC number: TQ320.66 INTRODUCTION Plastic injection molding is a widely used, complex but highly efficient technique for producing a large variety of plastic products, particularly those with high production requirement, tight tolerance, and complex shapes. The quality of injection molded parts is a function of plastic material, part geometry, mold structure and process conditions. The most important part of an injection mold basically is the following three sets of components: cavities, gates and runners, and cooling system.Lam and Seow (2000) and Jin and Lam (2002) achieved cavity balancing by varying the wall thickness of the part. A balance filling process within the cavity gives an evenly distributed pressure and temperature which can drastically reduce the warpage of the part. But the cavity balancing is only one of the important influencing factors of part qualities. Especially, the part has its functional requirements, and its thicknesses should not be varied usually.From the point view of the injection mold design, a gate is characterized by its size and location, and the runner system by the size and layout. The gate size and runner layout are usually determined as constants. Relatively, gate locations and runner sizes are more flexible, which can be varied to influence the quality of the part. As a result, they are often the design parameters for optimization.Lee and Kim (1996a) optimized the sizes of runners and gates to balance runner system for multiple injection cavities. The runner balancing was described as the differences of entrance pressures for a multi-cavity mold with identical cavities, and as differences of pressures at the end of the melt flow path in each cavity for a family mold with different cavity volumes and geometries. The methodology has shown uniform pressure distributions among the cavities during the entire molding cycle of multiple cavities mold.Zhai et al .(2005a) presented the two gate location optimization of one molding cavity by an efficient search method based on pressure gradient (PGSS), and subsequently positioned weld lines to the desired locations by varying runner sizes for multi-gate parts (Zhai et al ., 2006). As large-volume part, multiple gates are needed to shorten the maxi-mum flow path, with a corresponding decrease in injection pressure. The method is promising for de-sign of gates and runners for a single cavity with multiple gates.Many of injection molded parts are produced with one gate, whether in single cavity mold or in multiple cavities mold. Therefore, the gate location of a single gate is the most common design parameter for optimization. A shape analysis approach was presented by Courbebaisse and Garcia (2002), by which the best gate location of injection molding was estimated. Subsequently, they developed this methodology further and applied it to single gate location optimization of an L shape example (Courbebaisse,2005). It is easy to use and not time-consuming, while it only serves the turning of simple flat parts with uniform thickness.Pandelidis and Zou (1990) presented the optimization of gate location, by indirect quality measures relevant to warpage and material degradation, which is represented as weighted sum of a temperature differential term, an over-pack term, and a frictional overheating term. Warpage is influenced by the above factors, but the relationship between them is not clear. Therefore, the optimization effect is restricted by the determination of the weighting factors.Lee and Kim (1996b) developed an automated election method of gate location, in which a set of initial gate locations were proposed by a designer and hen the optimal gate was located by the adjacent node evaluation method. The conclusion to a great extent depends much on the human designers intuition, because the first step of the method is based on the designers proposition. So the result is to a large extent limited to the designers experience.Definition of feature warpage To apply optimization theory to the gate design, quality measures of the part must be specified in the first instance. The term “quality” may be referred to many product properties, such as mechanical, thermal, electrical, optical, ergonomical or geometrical properties. There are two types of part quality measures: direct and indirect. A model that predicts the proper-ties from numerical simulation results would be characterized as a direct quality measure. In contrast, an indirect measure of part quality is correlated with target quality, but it cannot provide a direct estimate of that quality.For warpage, the indirect quality measures in related works are one of performances of injection molding flowing behavior or weighted sum of those. The performances are presented as filling time differential along different fl ow paths, temperature differential, over-pack percentage, and so on. It is obvious that warpage is influenced by these performances, but the relationship between warpage and these performances is not clear and the determination of these weighting factors is rather difficult. Therefore, the optimization with the above objective functionprobably will not minimize part warpage even with perfect optimization technique. Sometimes, improper weighting factors will result in absolutely wrong results.In industry, designers and manufacturers usually pay more attention to the degree of part warpage on some specific features than the whole deformation of the injection molded parts. In this study, feature warpage is defined to describe the deformation of the injection parts. The feature warpage is the ratio of the maximum displacement of the feature surface to the projected length of the feature surface (Fig.1): =% (1)where is the feature warpage, h is the maximum displacement on the feature surface deviating from the reference platform, and L is the projected length of the feature surface on a reference direction paralleling the reference platform.Evaluation of feature warpageAfter the determination of target feature combined with corresponding reference plane and projection direction, the value of L can be calculated immediately from the part with the calculating method of analytic geometry (Fig.2). L is a constant for any part on the specified feature surface and projected direction. But the evaluation of h is more complicated than that of L.Simulation of injection molding process is a common technique to forecast the quality of part design, mold design and process settings. The results of warpage simulation are expressed as the nodal deflections on X, Y , Z component ( W x, Wy, Wz), and the nodal displacement W . W is the vector length of vector sum of W x i, Wy j , and Wz k, where i , j , k are the unit vectors on X , Y , Z component. The h is the maximum displacement of the nodes on the feature surface, which is correlated with the normal orientation of the reference plane, and can be derived from the results of warpage simulation.To calculate h , the deflection of Ith node is evaluated firstly as follows:where Wi is the deflection in the normal direction of the reference plane of ith node; Wix, Wiy, Wiz are the deflections on X , Y , Z component of ith node; , , are the angles of normal vector of the reference; A and B are the terminal nodes of the feature to projecting direction (Fig.2); W A and W Bare the deflections of nodes A and B .APPLICATION AND DISCUSSION The application to a complex industrial part is presented in this section to illustrate the proposed quality measure and optimization methodology. The part is provided by a manufacturer, as shown in Fig 4. In this part, the flatness of basal surface is the most important profile precision requirement. Therefore, the feature warpage is discussed on basal surface, in which reference platform is specified as a horizontal plane attached to the basal surface, and the longitudinal direction is specified as projected reference direction. The parameter h is the maximum basal surface deflection on the normal direction, namely the vertical direction, and the parameter L is the projected length of the basal surface to the longitudinal direction.The material of the part is Nylon Zytel 101L (30% EGF, DuPont Engineering Polymer). The molding conditions in the simulation are listed in Table 1. Fig . 5 shows the finite element mesh model of the part employed in the numerical simulation. It has 1469 nodes and 2492 elements. MPI is the most extensive software for the injection molding simulation, which can recommend the best gate location based on balanced flow. Gate location analysis is an effective tool for gate location design besides empirical method. For this part, the gate location analysis of MPI recommends that the best gate location is near node N7459, as shown in Fig.5. The part warpage is simulated based on this recommended gate and thus the feature warpage is evaluated: =5.15%, which is a great value. In trial manufacturing, part warpage is visible on the sample work piece. This is unacceptable for the manufacturer.The great warpage on basal surface is caused by the uneven orientation distribution of the glass fiber, as shown in Fig.6a. Fig.6a shows that the glass fiber orientation changes from negative direction to positive direction because of the location of the gate, particularly the greatest change of the fiber orientation appears near the gate. The great diversification of fiber orientation caused by gate location introduces serious differential shrinkage. Accordingly, the feature warpage is notable and the gate location must be optimized to reduce part warpage.To optimize the gate location, the simulated annealing searching discussed in the section “Simulated annealing algorithm” is applied to this part. The maximum number of iterations is chosen as 30 to ensure the precision of the optimization, and the maximum number of random trials allowed for each iteration is chosen as 10 to decrease the probability of null iteration without an iterative solution. Node N7379 (Fig.5) is found to be the optimum gate location. The feature warpage is evaluated from the warpage simulation results f (X)= =0.97%, which is less than that of the recommended gate by MPI. And the part warpage meets the manufacturers requirements in trial manufacturing. Fig.6b shows the fiber orientation in the simulation. It is seen that the optimal gate location results in the even glass fiber orientation, and thus introduces great reduction of shrinkage difference on the vertical direction along the longitudinal direction. Accordingly, the feature warpage is reduced.CONCLUSION Feature warpage is defined to describe the warpage of injection molded parts and is evaluated based on the numerical simulation software MPI in this investigation. The feature warpage evaluation based on numerical simulation is combined with simulated annealing algorithm to optimize the single gate location for plastic injection mold. An industrial part is taken as an example to illustrate the proposed method. The method results in an optimal gate location, by which the part is satisfactory for the manufacturer. This method is also suitable to other optimization problems for warpage minimization, such as location optimization for multiple gates, runner system balancing, and option of anisotropic materials. REFRENCES Courbebaisse, G., 2005. Numerical simulation of injection moulding process and the pre-moulding concept. Computational Materials Science , 34(4):397-405. doi:10.1016/matsci.2004.11.004 Courbebaisse, G., Garcia, D., 2002. Shape analysis and injection molding optimization. Computational Materials Science,25(4):547-553. doi:10.1016/S0927-0256(02) 00333-6 Jin, S., Lam, Y.C., 2002. 2.5D cavity balancing. Journal of Injection Molding Technology, 6(4):284-296. Kirkpatrick, S., Gerlatt, C.D.Jr., Vecchi, M.P., 1983. Optimiza- tion by simulated annealing. Science, 220 (4598):671-680. doi:10.1126/science.220.4598.671 Lam, Y.C., Seow, L.W., 2000. Ca vity balance for plastic injection molding. Polymer Engineering and Science, 40(6):1273-1280. doi:10.1002/pen.11255 Lam, Y.C., Jin, S., 2001. Opti mization of gate location for plastic injection molding. Journal of Injection Molding Technology , 5(3):180-192. Lee, B.H., Kim, B.H., 1995. Optimization of part wall thicknesses to reduce warpage of injection-molded parts based on the modified complex method. Polymer-Plastics Technology and Engineering , 34(5):793-811. Lee, B.H., Kim, B.H., 1996a. Automated design for the runner system of injection molds based on packing simulation. Polymer-Plastics Technology and Engineering , 35(1): 147-168. Lee, B.H., Kim, B.H., 1996b. Automated selection of gate location based on desired qualit y of injection molded part. Polymer-Plastics Technology and Engineering , 35(2): 253-269. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E., 1953. Equations of state calculations by fast computing machines. Journal of Chemical Physic s, 21(6):1087-1092. doi:10.1063/1.1699114 Pandelidis, I., Zou, Q., 1990. Optimization of injection molding design Part I: gate location optimization. Polymer Engineering and Science, 30(15):873-882. doi:10.1002/ pen.760301502 Pincus, M., 1970. A Monte Carl o method for the approximate solution of certain types of constrained optimization problems. Operations Research, 18:1225-1228. Shen, C.Y., Yu, X.R., Wang, L.X., Tian, Z., 2004a. Gate location optimization of plastic injection molding. Journal of Chemical Industry and Engineering , 55(3):445-449 (in Chinese). Shen, C.Y., Yu, X.R., Li, Q., Li, H.M., 2004b. Gate location optimization in injection molding by using modified hill-climbing algorithm. Polymer-Plastics Technology and Engineering, 43(3):649-659. doi:10.1081/PPT- 120038056 Zhai, M., Lam, L.C., Au, C.K., 2005a. Algorithms for two gate optimization in injection molding. International Polymer Processing, 20(1):14-18. Zhai, M., Lam, L.C., Au, C.K., Liu, D.S., 2005b. Automated selection of gate location for plastic injection molding processing. Polymer-Plastics Technology and Engineering , 44(2):229-242. Zhai, M., Lam, L.C., Au, C.K., 2006. Runner sizing and weld line positioning for plastics injection molding with multiple gates. Engineering with Computers, 21(3): 218-224. doi:10.1007/s00366-005-0006-6单一的塑料注塑模具浇口的优化李集泉,立德群,郭志颖,吕海元(塑性技术系,上海交通大学,上海200030,中国)电子邮件:2006年11月22日收到 2007年3月19日修改接受;摘要:本文对单一浇口注塑模具的优化方法进行分析。浇口的优化目标是最小化注塑件翘曲变形,因为对于大多数注塑件是一个关键的质量问题,它是受浇口位置的影响很大。特征翘曲度被定义为最大位移特征表面上的投影长度的比值来描述零件翘曲。最好的优化方法是与数值模拟技术相结合,找到最佳的浇口位置,其中以模拟退火算法是用来寻找最佳。最后,用一实例说明了用平面特征上的翘曲度评价翘曲变形的有效性。关键词:注塑成形,浇口位置,优化,特征翘曲度DOI:10.1631/jzus.2007.a1077文献标识码:A中图分类号:tq320.66引言塑料注射成型是一种广泛使用的,复杂的但高效生产大量各种塑料制品的技术,特别是用于生产那些生产要求高,精度高,和复杂形状的塑件。注塑件的质量是由塑料材料,零件的几何形状,模具结构和工艺条件决定的。注塑模具的最重要的组成部分,主要是以下三部分组成:形腔,浇口,流道,和冷却系统。Lam,Seow(2000)和Lam(2002)通过改变形腔的部分壁厚达到平衡。一个平衡充填过程的空腔内均匀分布的压力和温度,可大大减少塑件热变形。但形腔平衡是影响部分质量的重要因素。特别是部分有其功能要求,其厚度通常不应改变。 从模具设计的角度来看,一个浇口的特点是由它的大小,位置,和浇注系统的尺寸和布局决定。浇口尺寸、流道布局通常确定为常数。相对而言,浇口位置、流道尺寸更灵活,可以多种多样来影响零件的质量。因此,他们通常是优化设计的参数。Lee和Kim(1996)优化流道和浇口的尺寸为多点喷射腔浇注系统的平衡。流道平衡被描述为一个具有相同的腔模多腔入口压力的差异,在熔体的流动路径中的每个腔不同空腔体积和几何形状的一个底模压力存在差异。在多腔模具整个成型周期中,该方法已显示出空腔中的压力可以均匀分布。翟等人(2005年)提出了同一个压力梯度的基础上成型腔的两个浇口位置优化的搜索方法(PGSS),并随后通过改变流道尺寸多闸部件定位焊线到所需的位置(翟等人。2006年)。体积大的部分,在注射压力相应减小的同时,多浇口需要缩短最大流道。该方法是有前途的单腔多浇口和流道设计。许多注塑件无论是在单型腔或多腔模具是单浇口生产,。因此,一个单一浇口的位置优化是最常见的设计参数。形状分析方法是通过courbebaisse和加西亚提出的(2002年),来确定注射成型最佳浇口位置。随后,他们改善了这一方法,进一步应用到一个L形如单浇口位置优化(courbebaisse,2005)。这是易于使用和不费时的,而它仅是简单的平面部分厚度的均匀过度。Landslides和邹(1990年)提出的浇口位置的优化,以解决变形过大和过热降解问题,这是代表一个温度微分项的加权总和,一组参
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:导管注塑模具设计【带工艺卡】【18张图纸】【优秀】
链接地址:https://www.renrendoc.com/p-273969.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!