生物医学工程中英文对照外文翻译文献_第1页
生物医学工程中英文对照外文翻译文献_第2页
生物医学工程中英文对照外文翻译文献_第3页
生物医学工程中英文对照外文翻译文献_第4页
生物医学工程中英文对照外文翻译文献_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中英文对照外文翻译文献附录Ⅳ英文文献及翻译BiologicaleffectsoftheMagneticStimulationontheToadHeartAbstract-Westimulatedtheexposedtoadheartbyalowfrequencyandhighenergymagnetic.Byanalyzethedataofthisexperiment,itshowsthatthepulsatingoftheweaktoadheartwouldmakechangeafterstimulatedbymagnetic.Weakheartbeatstrengthened,thesinglepeakcurvewouldbecomethetwopeakscurvewithatriawaveandventriclewaveafterthemagneticstimulation.Butthecyclingofrhythmicpulsatilecurveoftoaddoesn'tchange.I.INTRODUTIONAlllifeformshavemagnetism.Allkindsofmagneticfieldwouldhavesomeeffectsontheconfigurationandactivitiesoflifeformsthatwhicheverenvironmentalmagnetic,additionalmagneticorinsidemagneticoforganism.Thebiologiceffectsarerelatedtothecharacteristicsandtheintensionofthemagneticfield,aswellasthespeciesandthetissuesofthelifeforms.Theexperimentationshowedthatmagnetismstimulationinsomerangewouldcontrolthegrowthofrattumour,whatevertheyareinoroutthebody.Muchmoretheycaninducethecancercellsdead.30mTmagneticstimulationwouldincreasethecontentofNOintheliverandthekidney.Magneticalsocanimprovetheactivityofsomeenzymeandpromotetheregenerationofnervetissue.Cellwouldincrease,theboneswouldbeconcrescence,thescarwouldberehabilitate.Thebloodrheologyandbloodcellnumberbothofhumanandratwouldchangeobviously,DIthebloodmucositywouldbelow.Heartisthemostimportantapparatusoflife.Itpulsatesdayandnight.Heartoncestoppulsating,thelifefordanger.Numerousscholarpaysattentiontotheroleofmagneticfield.Buttheyjuststudiedtheeffectsofmagneticstimulationoftheheartpacemaker.Theexperimentsaboutdirecteffectsofstimulateheartbymagneticisveryfew.Thetoadsareourexperimentanimals.Westimulatedandnotedbythemagneticstimulationequipmentandthenotedequipmentofpulsatilecurvemadebyourselves.Analyzetheresults.II.STUFFA.Experimentequipments:①magneticstimulationequipment;(magneticintension8-10T,impulsewidth150ms,maximalstimulationfrequency5Hz);②softwareofnotedpulsatilecurve(madebyourselves);③cardiomusculartransducer;④Ringer.Sol;⑤Batrachiainstruments;⑥clipoffrogheart;⑦cottonthread;®burette.B.Experimentanimals:toads.III.METHODA.Destroythebrainandthespinalcordofthetoadbystylet:Penetrateintotheoccipitalapertureuprightwithstylet,destroyedthebrainupwards,takebackthestyletanddestroythespinaldownwards.Ifthelimboftoadwererelaxed,itshowedthatthebrainandspinalweredestroyedcompletely.B.Exposethetoadheart:Makethetoadlyingonitsbackonthewindingcenter.Themagneticaspectisuprightthroughthetoadheart.Cuttheventralskinoftoad,snipthebreastbone,exposetheratheart.Nipthehearttipbyclipcarefully.Makethecottonthreadtiedwiththeclipoffroghearthelinkedwiththecardiomusculartransducer.Donotmakethetoadheartleavethorax,oritwoulddisturbtheexperimentresults.C.Notedtheresult:Connectthecardiomusculartransducerwiththecomputer.TakenotesthecurveoftoadheartwithoutgivingthestimulateofmagneticfieldD.Afterthreeminutes,notedtheweakpulsatilecurve.E.Makethemagneticintension10T,electricize10s.Stimulatethetoadheartandrecordthepulsatilecurve.IV.RESULTSTheabscissaofcardiacrhythmicpulsatilecurveistime,theordinateisconstrictionpower.Takenotesforthepulsatilecurveoftoadheartthatexposedjust.Wecanknowtherhythmicpulsatilecycleofthetoadheartis1.5sfromfig1whichshowthecardiacrhythmicpulsatilecurveofthetoadwhichwasexposedtheheartjustnow.Therearetwowavesineachcycle,oneisatriawave,theotherisventriclewave.Theatriawaveis0.5sandtheventriclewaveis1.0s.Theconstrictionpowerofatriaislessthanthatofventricle.Theamplitudeofconstrictionpowerofventricleisthe2timesoftheatria.Fig.4.1.Itisrhythmicpulsatilecurveofthetoadwithoutmagneticstimulation.Theconstrictionpoweroftoadheartwouldbecomeweakerafterthetoadheartwasexposedforawhile.Atthesametime,atriumwaveandventriclewavecannotbealreadydistinguished.Heartcontractingamplitudewerereducedobviously,donotgotothehalfoforiginalatriumwave.Therhythmicpulsatilecycleofthetoadheartisstill1.5s.Fig.4.2.Itistheweakpulsatilecurveoftoadwithoutmagneticstimulation.Butwecandistinguishtheatriawaveandtheventriclewaveagainaftergivingthetoadheartamagneticstimulationonfollowingpicture.Andtheamplitudeofventriclewavesismorethanthatofthesinglewave.Therhythmicpulsatilecycleofthetoadheartisstill1.5s.Thereweresixtoadsasexperimentanimalinourexperiment.Afterexposingheartatime,therhythmicpulsatilecurveallbecamesinglepeakcurve.Stimulatethemwhenthesingleamplitudewas0.95.Notedthedataandanalyzethem.Followingisthepulsatilecurveofthesixtoadsrecordedwhichwerestimulatedbymagneticfield.Fig.4.3.Itisthepulsatilecurveofthefisttoadwhichheartwasstimulatedbymagneticfield.Fig.4.4.Itisthepulsatilecurveofthesecondtoadwhichheartwasstimulatedbymagneticfield.Fig.4.5.Itisthepulsatilecurveofthethirdtoadwhichheartwasstimulatedbymagneticfield.Fig.4.6.Itisthepulsatilecurveofthefourthtoadwhichheartwasstimulatedbymagneticfield.Fig.4.7.Itisthepulsatilecurveofthefifthtoadwhichheartwasstimulatedbymagneticfield.Fig.4.8.Itisthepulsatilecurveofthesixtoadswhichheartwasstimulatedbymagneticfield.V.COMPARISIIONRecordventriclewaveamplitudeandatriumwaveamplitudeofthesixtoadsaftermagneticstimulation.Table.5.1.From"Toad1"to"Toad6"expressedthesixtoadswhichwasstimulatedbymagneticfield.The"Toad0"expressedthetoadwhichwasnotstimulatedbymagneticfield."Toad7"expressedthetoadwhichpulsatedweakly.amplitudesofatriawaveamplitudesofventriclewaveToad02.2752.34Toad11.1401.170Toad21.1201.129Toad31.1651.18Toad41.1201.128Toad51.2141.230Toad61.1511.169Toad70.95Expressthetoadwhichwasnotstimulatedbymagneticwith"Toad0",andexpressthetoadwhichpulsateweaklywith"Toad7".Makehistogramtocontrastbythesedata.Thefirsthistogramwasmadebythedataofthepulsatileamplitudesofwhentoadwasnotgetsstimulateandpulsateweakly,aswellasthepulsatileamplitudeofthefiststimulatedtoad.Aftermagneticstimulation,amplitudesofatriawaveandventriclewavewerehigherthansinglewaveofweakheart.Butitismorelowthantheamplitudesofheartwhenjustexposesobviously.Fig.5.1.Thehistogramwasmakebytheamplitudesofthetoadexposedheartjustlyandthetoadwhichstimulatedbymagneticfield,thetoadwhichpulsateweakly.The"Toad0"expressedthetoadwhichwasnotstimulatedbymagneticfield.The"Toad1"expressedthefisttoadwhichwasstimulatedbymagneticfield.The"Toad7"expressedthetoadwhichpulsatedweakly.Makehistogramrespectivelywiththedataofamplitudeofeachtoadstimulatedbymagneticfieldandtheamplitudeofsinglewave.Makehistogramwiththedataofamplitudesofsixtoadsstimulatedbymagneticfield,andcomparethem.Fig.5.2.Thehistogramwasmadebytheamplitudesofthefirsttoadwhichwasstimulatedbymagneticfieldandthetoadwhichpulsateweakly.The"Toad1"expressedthefisttoadwhichwasstimulatedbymagneticfield.The"Toad7"expressedthetoadwhichpulsatedweakly.Fig.5.3.ThehistogramwasmadebytheamplitudesofthesecondtoadwhichwasstimulatedbymagneticfieldandthetoadwhichpulsateweaklyThe"Toad2"expressedthesecondtoadwhichwasstimulatedbymagneticfield.The"Toad7"expressedthetoadwhichpulsatedweakly.Fig.5.4.Thehistogramwasmadebytheamplitudesofthethirdtoadwhichwasstimulatedbymagneticfieldandthetoadwhichpulsateweakly.The"Toad3"expressedthethirdtoadwhichwasstimulatedbymagneticfield.The"Toad7"expressedthetoadwhichpulsatedweakly.Fig.5.5.Thehistogramwasmadebytheamplitudesofthefourthtoadwhichwasstimulatedbymagneticfieldandthetoadwhichpulsateweakly.The"Toad4"expressedthefourthtoadwhichwasstimulatedbymagneticfield.The"Toad7"expressedthetoadwhichpulsatedweakly.Fig.5.6.Thehistogramwasmadebytheamplitudesofthefifthtoadwhichwasstimulatedbymagneticfieldandthetoadwhichpulsateweakly.The"Toad5"expressedthefifthtoadwhichwasstimulatedbymagneticfield.The"Toad7"expressedthetoadwhichpulsatedweakly.Fig.5.7.Thehistogramwasmadebytheamplitudesofthewasstimulatedbymagneticfieldandthetoadwhichpuls,"Toad6"expressedthesixthtoadwhichwasstimulatedbyma"Toad7"expressedthetoadwhichpulsatedweakly.Fig.5.8.Thehistogramwasmadebytheamplitudesofthewasstimulatedbymagneticfield.Fig.5.9.Thehistogramwasmadebytheamplitudesofthewasstimulatedbymagneticfieldandthetoadwhichpulsateweakly.Thereisdiscrepancybetweenthepulsatileaeachtoadwhichstimulatedbymagneticfield.Thisisdividualdiscrepancy,itisrelatedwiththestrongoftheexperimentanimals.Butifcomparedthesepulsatileamplitudesoftoadswhichstimulatedbymagneticfieldwithamplitudeofthetoadwhichpulsatedweaklyatthesametimeofdiscrepancyisverynotobvious.VI.CONCLUSIONSThereareaPwaveandaQRSwanelectrocardiogram.ComparethepulsatilecurvewiththeelectrocardiogramtowecandiscoverthatthePwavethatexpressatriumconstrictionisearlierthanatriawave.theORSwavethatexpressventricleconstrictionisearlierthanventricleconstrictionisearlierthanventriclewave.Heartconstrictionconnectedcloselywiththechangeofbiologicalelectricityofcardiacmuscle.Beforeheartcontracts,mustoccuronmusclecellmembraneamovementpotentialthatcanbeconducted,passthroughthenexcited-contractunitecanjustarousemusclecellcontracttorespond.ThePwaveandQRSwaveofelectrocardiogramreflectatriumandventriclerespectivelywiththeelectricalchangeinpolarizationcourse.Atriumwaveandventriclewavereflectatriumandventriclerespectivelythemechanicalcampaign.Mechanicalcampaignisonlyinitiatedfromelectricalcampaign.SoPwaveisearlierthanatriumwave,QRSwaveareearlierthanventriclesixthtoadwhichwave.Whenthepulsatilerhythmicallyofheartstoppedorindisorder.theelectricattackwouldbehelpfulonclinicdata.Themagnetismstimulationmayhavethesameeffectsastheelectricstimulationbasedonelectromagnetism.Thepulsatilecurveoftoadwhichjustexposedheartcandivideintoatriumwaveandventriclewave.Afteratime,heartisweakgradually,rightnow,heartcontractsintensityweakensobviously.AtriumwavecannotalreadydistinguishwithventriclewaveonthecurvesoftoadweakpulsatilecurveOriginaltwosummitcurveschangetosinglesummitcurve,andcontractrangereducesobviously.Donotgotothehalfoforiginalatriumwave.Butheartpulsatileperiodstillask1second.Stimulatetoadheart,thedirectionofmagneticfieldverticalcrosstoadheartcenterfromthebacktobelly.TakeToad6notesatonce,thepulsatilecurveoftoadrecoverybecameoriginaltwosummitcurves.Andtheamplitudeofventriclesixtoadswhichwaveworththansinglewaveisinheightof.Testedresultprovesthatthemagneticstimulationofhighenergycanpromotetoadheartstrengthobviously,butforthepulsatilecurveperioddoesnotbeactedonobviously.Canmakethecurveofpulsatilecurvealreadycannotbedistrictedtheatriumwaveandventricleoftheweakheartrecoverythatatriumconstrictionwithventricleconstrictionalternately.Thecellofcardiacmusclehasspecialelectricalphysiology.Electricalstimulatecanaffecttheelectricalphysiologymovingofheartobviously.Magneticfieldandelectricfieldhavethecharacteristicthatchangesmutually.Theroleofextramagneticfieldcanalsoarousetheioncurrentintheorganismtoad7cellofcardiacmuscletooccurchange.Therefore,itchangestheelectricalphysiologicalcampaignofthecellofcardiacmuscle,changeheartcontractcondition.Comparedwithdirectelectricalstimulation,themagneticstimulationhasalotofadvantages.Itshowsbyclinicalinformation,eliminatetheheartshakeofhumanbodywithcurrent(gothroughchestwall)toneedtheenergyof150-350Jprobably,directlyeliminateheartshaketoneedtheenergyof16-24Jprobably.Specificsizeandthecurrentdistributionofelectrodehaverelevantuniformity.Themagnetismofbiologicalorganizationisevenbasically,magneticfieldreachesthedeeplylayerorganizationoforganismveryeasilyontoadthroughskinandskeleton.Themagneticstimulationdoesnothavewound.Theresistancerateofskinandskeletonisgreat.Inductioncurrentandorganizationresistancebecomeinverseratio.Thereisasmallcurrentpassesthroughorganismwhenwasstimulatedbymagneticfield,sopersondoesnothaveuncomfortablefeeling.Thebodyandcoilarenotcontactedinthemagneticstimulationthereforewecanstimulatedirectlywithoutdoinganyhandlingforskininadvanced,willnotarousepain.Andthebodydoesnothaveelectricityconnectwithenvironment,sohaveverygoodsafety.Juststartforthestudyofbiologicaleffectsofthemagneticstimulationonlife-form.QuantificationoftheeffectsofthemagneticstimulationofpulsatilecurvestillneedstobestudyfurtherACKNOWLEDGMENTThispaperissupportedbytheNationalNaturalScienceFoundationofChinese(No.59977024)REFERENCES[1]A.B.Smith,C.D.Jones,andE.F.Roberts,"ArticleTitle",Journal,Publisher,Location,Date,pp.1-10.[2]Jones,C.D.,A.B.Smith,andE.F.Roberts,BookTitle,Publisher,Location,Date.[3]XiaoHongyu,ZhouWanshong,theDevelopmentoftheBiologicalEffectofMagneticFieldonHome.Chin.TPhvsThcr,Fclnvarv.1999,Vol.22.[4]ChangHanyin,BIOMAGNIJTISM,2003;3(2):6.[5]LiGuodong,theResearchandDevelopmentofBiologicalMagnetismApplicationon2003-2004.BIOMAGNIJTISM,2004Vol.4,NO.4:25-26.[6]YaoTai,Physiology[M],Beijing:People'ssanitarypress,2001.SE57.[7]GuoFengmei,ZhangGuilian,ChengXianghui,LiuJianling,BIOMAGNIJTISM2004Vol.4,No.2.[8]SongShijun,GuoShumei,WangFuwei,theMethodthatSynchronousRecordMachineryandElectricityActivityofFrogHeart.TOLRNALOFHEBEIMIDICALUNIVERSITI,VOL.27,No.4July2000.高能磁场刺激对蟾蜍心脏搏动影响的生物学研究摘要:我们采用低频高能磁场对蟾蜍的暴露心脏给予刺激,实验结果表明一定强度的磁场刺激可使衰弱的蟾蜍心脏搏动有增强,表现为心肌收缩力度增强,心搏收缩曲线由衰弱时的单波曲线恢复为体现心房收缩和心室收缩的双波曲线,但心脏收缩周期不变。Ⅰ、简介所有生物体都具有磁场,在生物体周围的环境中也常常存在着很多形式的磁场,这些磁场对生物体的组织结构和生理活动都会产生一定影响。磁场对生物体的影响效应一方面和磁场本身的特征相关,别一方面也和生物的种类和磁场的作用部位有关。研究实验表明在一定的强度范围骨磁场刺激可以有效抑制小鼠肿瘤的生长[1],对离体癌细胞也有抑制作用,甚至会诱导鼠癌细胞凋亡,效果显著[3]。30mT磁场可使大鼠肝组织、肾组织NO含量增高[2]。磁场还可以提高生物体内抗氧化酶的活性,促进神经组织的再生[6]。特定强度的磁场作用一定时间后会对组织细胞的增殖产生促进作用,对骨折愈合作用,疤痕修复都的增殖产生促进作用,对骨折愈合作用,疤痕修复都有显著治疗作用[4]。研究表明恒磁场环境对人和鼠的血液流变学及血细胞数有较明显的影响[3],可使血液粘度降低[5]。心脏是生物体最重要的器官,昼夜不停进行规律性搏动,心脏一旦停止跳动就会危及生物体的生命。临床资料已表明当心脏发生搏动停止或心跳节律发生紊乱时及时采用电击方法可以有效的使心脏除颤和复律。那么基于电磁理论,对生物体采取相应的磁刺激也应该产生于电刺激相同的生物效应。我们以蟾蜍为实验对象,用本实验室研发的磁场刺激器对蟾赊进行磁场刺激,记录实验结果,并进行分析。Ⅱ、材料A.设备:①磁场刺激器(本实验室研发,磁场强度8-10T,脉冲宽度150ms,最大刺激频率5Hz);②心搏信号检测软件(本实验室研发);③张力换能器;④任氏液;⑤蛙类手术器械;⑥蛙心夹;⑦棉线;⑧滴定管。B.实验动物:蟾蜍。Ⅲ、方法A.将探针在蟾蜍枕骨大孔处垂直刺人椎管,然后向上刺人颅腔彻底毁损脑组织再将探针退回进针处,向下刺人椎管内,捣毁脊髓。如果蟾蜍四肢松软表明脑和脊髓己完全破坏。B.将蟾蜍仰卧位置于磁场刺激器线圈上,蟾蜍心脏位于线圈中央,从而使磁场方向垂直向上穿过蟾蜍心脏。用镊子提起蟾蜍腹部皮肤,成倒三角形剪开,再提起胸骨柄,沿胸骨正中剪开胸骨,打开蟾蜍胸腔,小自剪开心包膜暴露出心脏。用蛙心夹夹住蟾蜍心尖部分少许,将蛙心夹上的棉线与张力换能器相连,不要使心脏离开胸腔,避免将心室吊起而影响记录结果。C.将张力换能器与计算机相连,启动心搏信号检测软件,记录没有给予磁场刺激时蟾蜍心脏的心搏活动曲线。D.3分钟后,记录此时的心搏活动曲线。E.将磁场强度设定为10T,充电10秒,给予蟾赊心脏一次磁场刺激,记录此后蟾蜍的心搏活动曲线。Ⅳ、结果实验记录的心搏曲线横坐标为时间,纵坐标表示心脏的收缩强度,毁髓后刚刚暴露的蟾蜍心脏搏动曲线为参考值。我们可以知道刚刚暴露的心脏蟾蜍的心脏波动周期为1.5s,每一个心搏周期有两个波,一个是心房收缩波,另一个是心室收缩波。心房收缩波约持续0.5s,心室收缩波约持续1s,心房收缩波的收缩力弱于心室收缩波,心室收缩波的幅值约是心房收缩波的二倍。图4.1.蟾蜍心脏刚刚暴露未受磁刺激时的心搏曲线蟾蜍心脏暴露一会儿后,心脏的收缩力会越来越弱。与此同时,心房波与心室波无法区分。心脏承包幅度明显减少,不走原来心房波的一半。蟾蜍心脏的节律性搏动周期仍然是1.5s。图4.2.蟾蜍心脏跳动非常微弱是的心搏曲线但是给予蟾蜍心脏一次磁刺激后,我们可以看到蟾蜍心脏心搏曲线恢复到原来的双波曲线,心房收缩波幅值和心室收缩波幅值都比单波曲线的幅值有较大的提高,心搏周期仍然约为1.5s。本实验对六只蟾蜍进行了磁场刺激。在蟾蜍心脏暴露一段时间后,它们的心脏收缩波形都变为单峰波。当心脏收缩波的幅度为0.95时,给予蟾蜍心脏一次磁场刺激,并记录实验数据。以下是进行磁场刺激后六只蟾蜍的心搏收缩曲线。图4.3.第一只蟾蜍受磁刺激后心搏曲线图4.4.第二只蟾蜍受磁刺激后心搏曲线图4.5.第三只蟾蜍受磁刺激后心搏曲线图4.6.第四只蟾蜍受磁刺激后心搏曲线图4.7.第五只蟾蜍受磁刺激后心搏曲线图4.8.第六只蟾蜍受磁刺激后心搏曲线Ⅴ、比较记录了六个蟾蜍心脏在磁刺激后的心室波振幅和心房波振幅后。对心房收缩波的幅值和心室收缩波的幅值进行统计分析,结果如下:表5.1.从“蟾蜍1”到“蟾蜍6”为受磁刺激的蟾蜍;“蟾蜍0”为刚刚暴露心脏未受磁刺激的蟾蜍;“蟾蜍7”为心脏跳动微弱但还未收磁刺激的蟾蜍。 心房收缩波幅值心室收缩波幅值蟾蜍02.2752.34蟾蜍11.1401.170蟾蜍21.1201.129蟾蜍31.1651.18蟾蜍41.1201.128蟾蜍51.2141.230蟾蜍61.1511.169蟾蜍70.95“蟾蜍0”是刚刚暴露了心脏还没有接受磁场刺激的蟾赊,“蟾蜍7”是心脏跳动已经非常虚弱但还没有接受磁场刺激的蟾赊.对蟾蜍暴露心脏后马上进行心搏情况记录。心脏暴露一定时间后,蟾蜍心跳明显减弱,这时再进行记录,然后给予蟾蜍心脏一次磁场刺激,记录刺激结束后的蟾蜍心跳情况。由数据看到,经过磁场刺激后,蟾蜍的心房波和心室波的幅值都高于心跳为单峰波时的幅值但仍然要比刚刚暴露心脏时蟾蛛的心跳幅值要低图5.1.为刚暴露心脏的蟾蜍和磁场刺激后的蟾蜍以及心跳减弱但还没有进行磁场刺激的蟾蜍的心搏曲线幅值的直方图。“蟾蜍0”为刚暴露心脏的蟾蜍;“蟾蜍1”为磁场刺激的第一只蟾蜍;“蟾蜍7”为心跳减弱但还没有进行磁场刺激的蟾蜍。将磁场刺激后的每只蟾蜍的心跳幅值和单峰波的幅值建立直方图,再将六只经过磁场刺激的蟾蜍的心跳幅值建立直方图,并进行比较。图5.2.第一只经磁刺激后蟾蜍的心搏幅值和心跳减弱但未受到磁刺激的蟾蜍心搏幅值的直方图。“蟾蜍1”为第一只经磁刺激后的蟾蜍。“蟾蜍7”为心跳减弱但未经磁刺激的蟾蜍。图5.3.第二只经磁刺激后蟾蜍的心搏幅值和心跳减弱但未受到磁刺激的蟾蜍心搏幅值的直方图。“蟾蜍2”为第二只经磁刺激后的蟾蜍。“蟾蜍7”为心跳减弱但未经磁刺激的蟾蜍。图5.4.第三只经磁刺激后蟾蜍的心搏幅值和心跳减弱但未受到磁刺激的蟾蜍心搏幅值的直方图。“蟾蜍3”为第三只经磁刺激后的蟾蜍。“蟾蜍7”为心跳减弱但未经磁刺激的蟾蜍。图5.5.第四只经磁刺激后蟾蜍的心搏幅值和心跳减弱但未受到磁刺激的蟾蜍心搏幅值的直方图。“蟾蜍4”为第四只经磁刺激后的蟾蜍。“蟾蜍7”为心跳减弱但未经磁刺激的蟾蜍。图5.6.第五只经磁刺激后蟾蜍的心搏幅值和心跳减弱但未受到磁刺激的蟾蜍心搏幅值的直方图。“蟾蜍5”为第五只经磁刺激后的蟾蜍。“蟾蜍7”为心跳减弱但未经磁刺激的蟾蜍。图5.7.第六只经磁刺激后蟾蜍的心搏幅值和心跳减弱但未受到磁刺激的蟾蜍心搏幅值的直方图。“蟾蜍6”为第六只经磁刺激后的蟾蜍。“蟾蜍7”为心跳减弱但未经磁刺激的蟾蜍。图5.8.六只经磁刺激后的蟾蜍心搏幅值的直方图图5.9.六只经磁刺激后的蟾蜍的心搏幅值和心跳减弱但未受到磁刺激的蟾蜍的心搏幅值的直方图经过磁刺激的六只蟾蜍的心搏恢复程度存在差异,这种差异和被实验动物的形态有关。但是这种差异与未经磁刺激时衰弱的心跳幅值相比并不明显。Ⅵ、结论将蟾蜍的心搏曲线与其心电图进行对照可发现,心电图上代表

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论