100%可再能源情景 100% RENEWABLE ENERGY SCENARIOS SUPPORTING AMBITIOUS POLICY TARGETS_第1页
100%可再能源情景 100% RENEWABLE ENERGY SCENARIOS SUPPORTING AMBITIOUS POLICY TARGETS_第2页
100%可再能源情景 100% RENEWABLE ENERGY SCENARIOS SUPPORTING AMBITIOUS POLICY TARGETS_第3页
100%可再能源情景 100% RENEWABLE ENERGY SCENARIOS SUPPORTING AMBITIOUS POLICY TARGETS_第4页
100%可再能源情景 100% RENEWABLE ENERGY SCENARIOS SUPPORTING AMBITIOUS POLICY TARGETS_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

100%RENEWABLEENERGYSCENARIOS

SUPPORTINGAMBITIOUSPOLICY

TARGETS

©IRENA2024

Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.

ISBN:978-92-9260-586-5

Citation:IRENACoalitionforAction(2024),100%renewableenergyscenarios:Supportingambitiouspolicytargets,InternationalRenewableEnergyAgency,AbuDhabi.

AbouttheCoalition

TheIRENACoalitionforActionbringstogetherleadingrenewableenergyplayersfromaroundtheworldwiththecommongoalofadvancingtheuptakeofrenewableenergy.TheCoalitionfacilitatesglobaldialoguesbetweenpublicandprivatesectorstodevelopactionstoincreasetheshareofrenewablesintheglobalenergymixandacceleratetheenergytransition.

Aboutthispublication

Thisbriefexaminesfivecommonlyreferencedenergyscenarios:threefocusedonachieving100%renewablesandtwostrivingfornet-zeroemissions.Itevaluatesandcontraststhesimilaritiesanddifferencesamongthesescenarios,providingpolicyrecommendationsderivedfromtheanalysistosupportambitiouspolicyobjectivesandachieveafullyrenewableenergy-poweredsystembymid-century.

Acknowledgements

ThisreportwascoauthoredbytheCoalitionforActionTowards100%RenewableEnergyWorkingGroup,undertheChairmanshipoftheVice-PresidentoftheEuropeanRenewableEnergiesFederation(EREF),RainerHinrichs-Rahlwes,andtheformerPresidentoftheInternationalSolarEnergySociety(ISES),DaveRenné.

ValuablecontributionswereprovidedbyCoalitionMembers:AnnaStrobl(néeSkowronformerWorldFutureCouncil),LottaPirttimaa(OceanEnergyEurope),StevenVanholme(EKOenergy),AndrzejCeglarz(RenewablesGridInitiative),LenaDente(WorldFuturesCouncil),NamizMusafer(IDEAKandy),JulieDucasse(CAN),Hans-JosefFellandThureTraber(bothEnergyWatchGroup),RehsmiLadwa(GWEC),BenjaminLehner(DMEC),KarimMegherbi(DiiDesertEnergy),MartaMartinez(Iberdrola),BharadwajKummamuru(WorldBioenergyAssociation),GavinAllwright(IWSA),RoquePedace(INFORSE),LeaHayez(RGI),MonicaOliphant(ISES)[nowrepresentingWWEA];andIRENAcolleaguesIlinaRadoslavovaStefanova,JarredMcCarthy,GiedreViskantaite,AsamiMiketa,BilalHussain,JuanPabloJimenezNavarro,JuanJoseGarciaMendez,MichaelTaylor,andAnindyaBhagirath(formerIRENA)underthesupervisionofRabiaFerroukhi(formerDirector,IRENAKnowledge,PolicyandFinanceCentre)andUteCollier(ActingDirector,IRENAKnowledge,PolicyandFinanceCentre).

DesignwasprovidedbyMyrtoPetrou.

TheIRENACoalitionforActionwouldalsoliketoexpressitsgratitudetoalltheTowards100%RenewableEnergyWorkingGroupMemberswhoparticipatedintheeventsanddiscussionsthatinformedthisBrief.

Disclaimer

Thispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAandtheIRENACoalitionforActiontoverifythereliabilityofthematerialinthispublication.However,neitherIRENA,theIRENACoalitionforAction,noranyofitsofficials,agents,dataorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.

TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENAorMembersoftheIRENACoalitionfor

Action.Mentionsofspecificcompanies,projectsorproductsdonotimplyanyendorsementorrecommendation.ThedesignationsemployedandthepresentationofmaterialhereindonotimplytheexpressionofanyopiniononthepartofIRENAortheIRENACoalitionforActionconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.

Coverphotos:FromlefttorightNewAfrica/S,buffaloboy/S,BELLKAPANG/S,DragonImage/Ss.

100%RENEWABLEENERGYSCENARIOS:SUPPORTINGAMBITIOUSPOLICYTARGETS3

CONTENTS

1.INTRODUCTION 4

2.BACKGROUND 5

3.OVERVIEWOFSCENARIOSANALYSED 6

4.KEYFINDINGS 10

4.1.ELECTRIFICATION 11

4.2.SOLARANDWIND 12

4.3.BIOMASS 12

4.4.OTHERRENEWABLESOURCES 12

4.5.GREENHYDROGEN 13

4.6.TRANSPORT 13

4.7.HEATINGANDCOOLING 14

4.8.SOCIO-ECONOMICASPECTSOFTHESCENARIOS 14

5.SUMMARYANDRECOMMENDATIONSFORPOLICYMAKERS 16

REFERENCES

19

4100%RENEWABLEENERGYSCENARIOS:SUPPORTINGAMBITIOUSPOLICYTARGETS

01INTRODUCTION

InpursuitofthegoalsoftheParisAgreement,net-zeroenergysystemscenariosincorporateabroadrangeofenergysources,primarilydrivenbyrenewablesbutalsoincludingresidualfossilandnuclearenergycombinedwithcarbonremovalstrategiestoprovidepathwaystolimitglobaltemperaturesto1.5°Cofpre-industriallevels.Net-zerosystemscenariosarefundamentallybasedon(i)graduallyphasingoutfossilfuelsandnuclearenergywhilemitigatingsectoralimpacts;and(ii)assumingthattheuseoffossilandnuclear,withcarbonremovalstrategies,wouldstillbeneededduetoperceivedtechnicalchallengestothedecarbonisationandelectrificationofhard-to-abatesectors.

However,withintheenergycommunitytherehasbeenagrowingdebateonthefeasibilityandcredibilityofafully100%renewableenergysystem(definedinBox1).100%renewableenergyscenarioproponentsarguethatthereisgrowingevidencethatsuchanenergysystem,completelydevoidoffossilandnuclearresources,isbothtechnologicallyfeasibleandoffersthelowestcost-andmostenvironmentallysustainable-optionforthedecarbonisationoftheglobalenergysystem.

Bycomparingthree100%renewableenergyscenariosandtwonet-zeroscenarios,thispolicybriefseekstogobeyondthefeasibilityandcredibilitydebateconcerningeachindividualscenario.Rather,thisbriefidentifiesthecommonchallengesandopportunitiesforarapidandholisticshifttowardsmoreambitiousrenewableenergytargets,andprovidesrelatedpolicyrecommendations.Itcallsfordecisionstobetakenandimplementedtodayandidentifiesrequirementstosupporta100%renewableenergysystembymid-century.

Box1TheIRENACoalitionforActionhasagreedthefollowingdefinitionfor100%

renewableenergy:

Renewableenergyencompassesallrenewablesources,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergy.Onehundredpercentrenewableenergymeansthatallsourcesofenergytomeetallend-useenergyneedsinacertainlocation,regionorcountryarederivedfromrenewableenergyresources24hoursperday,everydayoftheyear.Renewableenergycaneitherbeproducedlocallytomeetalllocalend-useenergyneeds(power,heatingandcooling,andtransport)orcanbeimportedfromoutsidetheregionusingsupportivetechnologiesandinstallationssuchaselectricalgrids,hydrogenorheatedwater.Anystoragefacilitiestohelpbalancetheenergysupplymustalsouseenergyderivedonlyfromrenewablesources.

100%RENEWABLEENERGYSCENARIOS:SUPPORTINGAMBITIOUSPOLICYTARGETS5

BACKGROUND02

BasedonthefindingsoftheIntergovernmentalPanelonClimateChange’s(IPCC)1.5°Creportof2018,andtherecent6thAssessmentReport,orAR6(2023),mitigatingclimatechangetonomorethan1.5°Cabovepre-industriallevelsbytheendofthiscenturywillrequirethecompleteeliminationofallanthropogenicgreenhousegasemissionsby2050,orevenearlier(IPCC,2019,2023).TheAR6reportfurthercallsfor“rapidanddeep,andinmostcases,immediategreenhousegasemissionsreductionsinallsectorsinthisdecade”tolimitglobalwarmingto1.5°C.Giventhatthemajorityofanthropogenicemissionsareduetoenergy-relatedactivities,harnessingrenewableenergytechnologies(solar,wind,hydro,geothermal,bioenergy,ocean,etc.),alongwithsignificantlyincreasedenergyefficiencymeasures,willbekeytotheseemissionreductions(IPCC,2023).Thesemeasureswillalsoprovideadditionalsocietalbenefitssuchasimprovedlocalairqualityand-withadequatepoliciesinplace-willexpandenergyaccessandequity,andstrengthenlocaleconomies.

Evidencefromsomepartsoftheworldsuggeststhattheenergysystemisalreadytransformingintoazero-carbon,distributedsystembasedonadiversemixofrenewableenergysourcesandtechnologies.Forexample,CostaRica,IcelandandUruguayderivemorethan50%oftheirtotalenergysupplyfromrenewables-althoughnotnecessarilyvariablerenewablessuchaswindandsolar(IRENA,2023a,2023b,2023c).In2021,CostaRicademonstratedthata100%renewableelectricitysystemisviablebymeetingmostofitspowerneedswithamixofhydro,windandgeothermal,withrenewablesofferingthelowest-costsolutiontonewandupgradedpowerproduction.Inaddition,significantgainsarebeingmadeinglobalcleanenergyaccessthroughrooftopsolarsystemsandotherdistributedformsofsolarelectricity,increasingelectricvehicleuse,andsectorcouplingofrenewablepowertogreenhydrogenapplications.However,achievinga100%renewableenergysystemrequiressystemicchangesinenergymarketdesignandinfrastructuredevelopment.Long-termdecisionsmustbeimplementedtoday,regardlessofcurrentmarkettrends.Additionally,decisionsareneededtodaytocreateanenablingenvironmentinwhichthe

requiredinfrastructureandcapacityarereadilyavailableaswetransitiontowardsa100%renewable

energyfuture.

Acrucialapproachinguidinghowa100%renewableenergysystemcanbeachievedistoexaminevariousenergytransformationscenarios.Overtheyears,avarietyofenergymodelshavebeendevelopedandappliedtoanalysedifferenttransformationpathwaysandcalculatetheimpactsofdifferentpolicyandtechnologyoptions,oftenwiththepurposeofidentifyingtheleast-costapproachforachievinganenergytransformationgoalortarget.Whereasclimatemodelsanalysetheconsequencesofdifferentemissionpathwaysofbothenergy-andnon-energy-relatedgreenhousegas(GHG)emissionsontheglobalclimate,energyscenariosusevariousenergy-relatedmodelsandassumptions,suchascostordeploymentoptimisationtechniquestoidentifyvariouspathwaysforachievingtheendgoal.

6100%RENEWABLEENERGYSCENARIOS:SUPPORTINGAMBITIOUSPOLICYTARGETS

OVERVIEWOF

03SCENARIOS

ANALYSED

Modellingscenariosthattarget100%renewableenergyhavegainedprominenceinthepastdecade,asdescribedinalandmarkpublicationbyKhaliliandBreyer(2022).Intheirpublication,many100%renewableenergyscenariostudiesconductedatnational,regionalandgloballevelswereevaluatedandshowntohaveincreasingreliabilityandcredibilityasmethodsanddataimprove.

Threeenergytransformationscenariosdedicatedtoachieving100%renewableenergyby2050areconsideredhere:TheLappeenranta-LahtiUniversityofTechnology(LUT)Global100%REScenario(Bogdanovetal.,2021);TheUniversityofTechnologySydney(UTS)1.5°CScenarioincludedintheir“AchievingtheParisClimateGoals”Report(Teske,2019);andStanfordUniversity’s100%Wind-Water-Solar(WWS)Scenariothatspecificallycovers145countries(Jacobsonetal.,2022).Thesescenarioswerechosenbecausetheyadheretotheprinciplesof100%renewableenergy,areglobalinscopeandextendtheiranalysisto2050.

Inaddition,twoscenariosthataimfornetzeroby2050byreducinggreenhousegas(GHG)emissionsinordertolimitglobalwarmingto1.5°Carealsoconsidered:theInternationalRenewableEnergyAgency(IRENA)1.5°CScenario(IRENA,2021)andtheInternationalEnergyAgency(IEA)Net-ZeroEmissions(NZE)Scenario(IEA,2021).Thesetwoscenariosincludenuclearandfossil-fuelpoweredgenerationaswellascarbonremovalstrategiesaspartofafutureenergymix.Theyalsoincludecarboncaptureandutilisation(CCU),andcarboncaptureandstorage(CCS)technologiesforremovingresidualemissions,aswellasacombinationofthetwo:carboncapture,utilisationandstorage(CCUS).CCUSisexpandedinthescenariostoincludebioenergywithcarboncapture,andstorage(BECCS,incorporatedbyIRENAandIEA),anddirectaircapturewithcarboncaptureandstorage(DACCS,incorporatedbyIEA).Inaddition,CCUcanbepartofa100%renewableenergyScenariowithanon-fossilCO2source,whichisexpandedonintheLUTGlobal100%REScenario,thedistinctionbeingthatCCScannotbepartofa100%renewableenergyscenario(Bogdanovetal.,2021).

Allfivescenariossharethesamemodellinghorizonto2050withintermediatemilestones(e.g.,2030)andtheyallinvolvearapidandlarge-scaledeploymentofrenewableenergysolutions,especiallysolarandwindtechnologies.

100%RENEWABLEENERGYSCENARIOS:SUPPORTINGAMBITIOUSPOLICYTARGETS7

Theauthorsofthispolicybriefrecognisethatmanyofthesestudieshavebeenupdatedsincetheiroriginalpublication.Nevertheless,thekeyfindingsfromeachscenarioremainlargelyunchangedintheupdatedstudies.Furthermore,toreiterate,themainobjectiveofthispolicybriefistoidentifyoverarchingpolicyrecommendationsthatcanbederivedfromundertakingnetzeroand100%renewableenergyscenarioanalyses.Accordingtothescenarios’authors,100%renewableenergy-orveryhighsharesofrenewables-iswhatpolicyanddecision-makersshouldstrivefor.The100%renewableenergystudiesfoundthistobe,forthemostpart,thelowercostoptionforastableandreliableenergysupplyinlinewiththeobjectiveoflimitingglobalwarmingto1.5°C,whichwillbefurtherelaboratedinSection5.

Moreover,theauthorsofthispolicybriefacknowledgetherearesomelimitationstosuchanalyses.Forexample,recenteventsunforeseenbytheauthors,includingCOVID-19andtherelatedenergycrisis,arenotreflectedintheseScenarios.Moreover,thedirectcomparisonofsomeinputassumptionsandoutputsisdifficultsincethemodelsusedifferentsetsofindicators.Tothisend,Table1providesagenericoverview,representingcommonalitiesacrossallscenariosorganisedintermsoftargets,inputs,methodologiesusedandkeyoutcomes.Figure1detailstheenvisionedtotalenergymixesforeachscenarioby2050.Whiletheauthorsof100%renewableenergyscenariosmightuseslightlydifferentterminology,forconsistencythedefinitionsforthetermsusedforthispolicybriefarespecifiedinBox2.

Box2Definitions

Finalenergyconsumption(FEC)referstoallfuelandenergydeliveredtousersfortheirenergyuse.FECincludessecondaryenergy,i.e.afterconversionprocessesandrelatedlosses,andtheforminwhichenergyismadeavailableforfinalconsumption(e.g.electricity,heat,biofuels,gasolineanddiesel;butalsocoal,naturalgasandbiomassiftheyareusedforheatingorotherdirectuses).FECdoesnotincludenon-energyusesoffossilandbiomassresourcessuchasthefeedstocktothechemicalindustryforplasticsandbioplasticsproduction,whichwouldbeconsideredtotalfinalenergyconsumption(TFEC).

Totalenergysupply(TES)consistsofprimaryenergyproductionandprimaryandsecondaryenergyimportssubtractingenergyexports,internationalbunkersandstockchanges.

Totalprimaryenergydemand(TPED)referstoprimaryenergy,i.e.,theformofenergythatfirstappearsintheenergybalance,beforeconversionprocessesandrelatedlosses(e.g.,crudeoil,coal,naturalgas,biomass).

Source:UNInternationalrecommendationsforenergystatistics(IRES,2018),(IRENA,2013).

8100%RENEWABLEENERGYSCENARIOS:SUPPORTINGAMBITIOUSPOLICYTARGETS

Table1

Overviewofscenariosanalysed

ENERGY

SYSTEM

MODEL

GLOBAL

100%RE

1.5°CSCENARIO

100%WIND-

WATER-SOLAR

(WWS)

1.5°CSCENARIO

NET-ZERO

EMISSIONS(NZE)

Institution

LUT(2021)

UTS(2019)

Stanford(2022)

IRENA(2021)

IEA(2021)

Target(s)

100%renewableenergysystemby2050

Achieving1.5˚Cby2050withprimaryenergy

supplybasedon100%renewableenergy

80%WWSby2030;

100%WWSby2050for145countries

Energytransition

pathwayaligned

withthe1.5°Ctarget

(netzeroby2050)

Netzeroby2050

Renewable

energyshareintotalenergysupply(TES)by2050

100%

100%(<92%,including

non-energyconsumption,whichwillstillinclude

fossilfuels.Primary

energysupplyin2050willbebasedon100%renewableenergy)

100%

74%intotalenergy

supply(90%inelectricitygeneration)

67%intotalenergy

supply(88%inelectricitygeneration)

Energy

sources

includedin

2050

Solarphotovoltaic(PV),concentratedsolarpower(CSP),wind,hydropower,geothermaland

bioenergy

TPED:solar,wind,hydro,geothermal,biomass,

oceanenergy(tidalandwave),naturalgas,oil,coal(latterduetonon-energyconsumption)

Generation:wind,solarPV,CSP,geothermal,hydro

andoceanenergy.

Heat:solarthermal,

geothermalheat

TES:solar,wind,biogas,biomass,hydropower,

geothermal,solar,oceanenergy,naturalgas,oil,coalandnuclear

TES:solar,bioenergy,

wind,hydropower,

geothermal,other

renewables,nuclear,

naturalgas,oilandcoal.

2050share

ofelectricity(electrificationlevel)

89%(totalprimaryenergydemand)

92.3%(totalfinalenergydemand)

Efficiencymeasuresresultintotalenergydemand

decreasingby56.4%,sothatremainingenergyisnearlyall(~99.1%)

electricity:85%higherthan2018actuallevels(totalinstalledcapacity)

51%ofdirectelectricityintotalfinalenergy

consumptionand14%fromhydrogen

49%ofelectricityintotalfinalenergyconsumption

Cumulative

investment

neededto

2050

USD72trillion,

notingnetenergeticyieldperinvested

unitofcapitalin

renewableelectricitysolutionsfarexceedstheoneinupstreamfossilfuels

USD51trillionacrossthepowersector(anaverageinvestmentofUSD1420billionperyear,2015-

2050)

USD12.4trillionfor

theheatingsector(an

averageinvestmentof

USD344billionperyear,2015-2050)

AroundUSD61.5trillion

Upfrontcostsare

recoveredthroughenergysales,coveringWWS

electricity;heatandgreenhydrogengeneration;

storageforelectricity,

heating,coolingand

greenhydrogen;districtheatingheatpumps;all-distancetransmission;anddistribution

USD131trillion

(annualfunding

requirementaveraging

USD4.4trillion),adaptedfromplannedgovernmentcumulativeenergy

andenergyrelated

infrastructureinvestmentstrategiesamountingtoUSD98trillionby2050

Annualaveragecapitalinvestedisindicatedfor2030-2040-2050:

-40-50trillionUSD,

annualinvestmentsof4-5trillionperyearby2030

-AlmostUSD5trillionannuallyby2040

-USD4.5trillionannuallyby2050

Jobcreation

134millionby2050intheglobalenergysector*

47.8millionenergy-sectorjobsby2050

(upto89%wouldbe

renewableenergyjobsby2030)

28.4million(netincrease)by2050

122millionjobsintheglobalenergysector:

-43milliondirectlyinrenewableenergy

-25millioninpowergridsandflexibility

-25millioninenergyefficiency

-2.24millioninhydrogen

30millionmorepeopleunderNZEworkingincleanenergy,efficiencyandlow-emissions

technologies.

*(Ram,etal.,2022).

1.5°CSCENARIO(UTS)

8%

16%

19%

19%

33%

4%

1%

WWS(STANFORD)

1%

3%

5%

45%

46%

Solar

SolarPV

SolarCSP

Hydropower

Oceanenergy

Bioenergy

Geothermal

Windenergy

Naturalgas

Nuclear

Oil

Fossil

Coal

Otherrenewables

Othernon-renewables

100%RENEWABLEENERGYSCENARIOS:SUPPORTINGAMBITIOUSPOLICYTARGETS9

Figure1

ComparedenergyScenariosandtheirtotalenergysupplyin2050

GLOBAL100%RE(LUT)

2%

3%

18%

69%

6%

2%

6%

2%

9%

4%

1.5°CIRENA

25%

16%

13%

17%

6%

1%

1%

NZE(IEA)

11%

8%

6%

20%

16%

19%

11%

6%

3%

10100%RENEWABLEENERGYSCENARIOS:SUPPORTINGAMBITIOUSPOLICYTARGETS

04KEYFINDINGS

AllscenarioscoveredinSection3areinlinewitha1.5°Ctargetbymid-century.ThisisthepreferredtargetsetbytheParisClimateAccordof2015(UN,2015).Detailsofwhattheseemissionreductionpathwayscouldlooklikeovertimewerepublishedinthe2018IPCCSpecialReport,GlobalWarmingof1.5°C(IPCC,2019).Allthescenariosexaminedcallfor:

1.energyrelatedGHGemissionstofalltozero(orNetZero)by2050,ifnotearlier;

2.arapidreductionofemissionstoabouthalfofthecurrentlevelsbytheyear2030,consistentwiththeIPCCAR6report(IPCC,2023);and

3.energyefficiencymeasurestobesignificantlyincreased,sothatpercapitaenergyintensityandtotalfinalenergyconsumption(TFEC)arelowerby2050thancurrently,evenastheglobalpopulationgrows.

Variousstepstoachievetheseend-useenergyreductionsaresuggested,suchasgreatlyimprovedefficienciesinbuildingdesignandretrofits,expandeduseofheatpumptechnologies,anddemand-sidemanagementstrategies.

TheIEA’sNZEandIRENA’s1.5°CScenarioincludecarbonremovalstrategies,thus,allowingforcontinuedinfrastructurefor,andexploitationof,fossilresourcestoalimitedextent.The100%renewableenergyscenariosdifferinthemilestonesandexacttechnologyandresourcesmix,buttheydonotallowforotherthanrenewableenergysourcesby2050orsoonafter.Additionally,thethree100%renewableenergyscenariosstartfromtheassumptionthatfromacertainyearonwardsonlyrenewablesourcesshouldbeused.Insum,the100%renewableenergyscenariosrequirehighersystemflexibilityonthedemandandsupplysideandthereforevariousstorageandflexibilityoptions.

Thissectionfocusesonthekeyfindingsfromthe100%renewableenergyscenarios;similaritiesandrelevantdifferencescomparedwiththenet-zerostudieswillalsobehighlighted(furtherdetailingthedifferencesprovidedinTable1andFigure1).Thesucceedingsectionwillprovideasummarywithrecommendationsforpolicymakers.

100%RENEWABLEENERGYSCENARIOS:SUPPORTINGAMBITIOUSPOLICYTARGETS11

4.1.Electrification

PerhapsthemostimportantcommonfindingamongallscenariosisthatelectricityinTFECwillgrowsubstantiallyoverthenext30years,inpartduetotheelectrificationoftheindustrial,transportandbuildingsectorsaswellasduetoageneralincreaseinelectricgoodsworldwideandanoverallincreaseinsectorcouplingapplications.Dependingonthescenario,electrificationwillprovideanywherefrom50%tomorethan90%ofTFECby2050,comparedtoaround20%in2022(IEA,n.d.).Consequently,thereisaneedtobuildasignificantamountofnewelectricitycapacityandenablinginfrastructuretocovertheneedsofthesesectors.

TheLUTGlobal100%REScenario(Bogdanovetal.,2021);UTS1.5°CScenarioincludedintheirAchievingtheParisClimateGoalsreport(Teske,2019);andStanfordUniversity’s100%WWSScenario(Jacobsonetal.,2022)specifythattheelectrificationofallenergysectorscanbeachievedwithouttheneedforanyfossil-fuel-poweredgenerators.Theelectrificationoftransportandheatingareconsistentacrossallthreescenarios,withafocusonelectrifyingthetransportsectorbyreplacinginternalcombustionengine(ICE)vehicleswithelectricvehicles(EVs).TheIRENA1.5°CScenariostatesthat49%ofthetransportsectorwillbeelectrifiedby2050.

Withelectricityinherentlybeingthemain‘energycarrier’ofthefutureinallscenarios,aresultingsubstantialincreaseinelectricitydemandby2050isexpected.TheGlobal100%REScenariosuggeststhat90%ofTPEDwillbemetbyelectricityin2050(Bogdanovetal.,2021).Thisscenarioanticipatesthatelectricitydemandwillincreasesubstantiallyby2050withthegreatestincreasecomingfromend-usesectorsintransportandindustry.Inthisregard,theGlobal100%REScenarioisconsistentwithIEA’sNZEandIRENA’s1.5°CScenario.Incomparison,theWWSScenario(Jacobsonetal.,2022)assumesanear-totalelectrificationofTFEC,withonlyasmallportionachievedthroughsolarthermalandgeothermalheat.

Intermsofenergyefficiency,theWWSScenarioassumesthatefficiencymeasuresaswellasareductionintraditionalfossil-relatedindustrydemandswillreducetheoveralldemandforenergyby56.4%by2050(Jacobsonetal.,2022).TheUTS1.5°CScenarioalsoassumesmorethan50%reductioninfinalenergydemandworldwideduetoefficiencyandconservationmeasures(Teske,2019).TheGlobal100%REScenarioanticipatesa49%efficiencyimprovementintheratioofTFECtoTPEDfrom2015to2050(Bogdanovetal.,2021).Allscenarios,particularlythe100%renewableenergyscenarios,assumethatthetotalenergydemandwilldecreaseowingtoenergyefficiencyimprovementsby2050.

Theoverallrapidexpansionoftheelectricitysectorandthegrowthofvariablerenewableenergy(VRE)

sourceswilldemandatransformationofthetransmissionanddistributioncapabilitiesofthegrid.This

willrequirelargeinvestmentstoexpandandenhancethegridleadingtosmartandhighlydigitalized

grids;e.g.,upgradesincontrolandmonitoringofgrids.Additionalstoragecapacitiesandvariousstorage

technologieswillalsoberequired.TheUTS1.5°CScenario,forexample,underscoresthatashort-term

largequantityofover244GWofhydro-pumpedstorageand12GWofbatterystorageby2030mustbe

installedtosupportthemajorexpansionofsolarPV(Teske,2019).

Finally,sectorcouplingisanimportantrequirementtomatchVREandflexibledemand,particularlyviahydrogenproduction,electricvehiclesandspaceheatingdemand.Powerquality,reliabilityandsecurityrequirementdemandsbyconsumersareincreasing.Yet,asmoredistributedandvariablesourcesarebeingtiedintothegridthesefactorscanpotentiallybenegativelyimpacted.Gridflexibility,achievedthroughstoragetechnologiescoveringtimescalesfromhourlytodailytoseasonally,demand-sidemanagementoftheload,andregionalpower

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论