立体几何大题
(2)求二面角A1-BC1-B1的余弦值。平面A1ACC1⊥底面ABC。(2)求直线AC与平面A1BB1所成角的正弦值.。A B C D E F P M . . 1、如图。
立体几何大题Tag内容描述:<p>1、立体几何大题练习(文科):1如图,在四棱锥SABCD中,底面ABCD是梯形,ABDC,ABC=90,AD=SD,BC=CD=,侧面SAD底面ABCD(1)求证:平面SBD平面SAD;(2)若SDA=120,且三棱锥SBCD的体积为,求侧面SAB的面积【分析】(1)由梯形ABCD,设BC=a,则CD=a,AB=2a,运用勾股定理和余弦定理,可得AD,由线面垂直的判定定理可得BD平面SAD,运用面面垂直的判定定理即可得证;(2)运用面面垂直的性质定理,以及三棱锥的体积公式,求得BC=1,运用勾股定理和余弦定理,可得SA,SB,运用三角形的面积公式,即可得到所求值【解答】(1)证明:在梯形ABCD。</p><p>2、立体几何练习题1.四棱锥中,底面为平行四边形,侧面面,已知,.(1)设平面与平面的交线为,求证:;(2)求证:;(3)求直线与面所成角的正弦值.2.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,AD=AC=1,O为AC的中点,PO平面ABCD,PO=2,M为PD的中点。(1)证明:PB/平面ACM;(2)证明:AD平面PAC(3)求直线AM与平面ABCD所成角的正切值。3.如图,四棱锥中,与都是等边三角形(1)证明:平面;(2)求二面角的平面角的余弦值4.如图,四棱锥PABCD中,PA底面ABCD,ACAD底面ABCD为梯形,ABDC,ABBC,PA=AB=BC=3,点E在棱PB上,且PE=2EB。</p><p>3、1.(2009全国卷)如图,四棱锥中,底面为矩形,底面,点在侧棱上,。 (I)证明:是侧棱的中点;求二面角的大小。 2.(2009全国卷)如图,直三棱柱ABC-A1B1C1中,ABAC,D、E分别为AA1、B1C的中点,DE平面BCC1()证明:AB=AC ()设二面角A-BACBA1B1C1DED-C为60,求B1C与平面BCD所成的角的大小3.(2009浙江卷)如图,平面,分别为的中点(I)证明:平面;(II)求与平面所成角的正弦值4.(2009北京卷)如图,四棱锥的底面是正方形,点E在棱PB上.()求证:平面; ()当且E为PB的中点时,求AE与平面PDB所成的角的大小.5.(2009江西卷)如图。</p><p>4、高中立体几何典型习题及解析(二)26. 在空间四边形ABCD中,E,H分别是AB,AD的中点,F,G分别是CB,CD的中点,若AC + BD = a ,ACBD =b,求.解析:四边形EFGH是平行四边形,(4分)=2=27. 如图,在三角形ABC中,ACB=90,AC=b,BC=a,P是ABC 所在平面外一点,PBAB,M是PA的中点,ABMC,求异面直MC与PB间的距离.解析:作MN/AB交PB于点N(2分)PBAB,PBMN。(4分)又ABMC,MNMC(8分)MN即为异面直线MC与PB的公垂线段,(10分)其长度就是MC与PB之间的距离, 则得MN=AB=28. 已知长方体ABCDA1B1C1D1中, A1A=AB, E、F分别是BD1和AD中点.(1)求异。</p><p>5、专题:立体几何大题中有关体积的求法角度问题、距离问题、体积问题是立体几何的三大基本问题。以下是求体积的一些常用方法及有关问题。一公式法1正三棱柱的侧面展开图是边长分别为2和4的矩形,则它的体积为 2如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为()A BC D练习3.一个几何体的俯视图是一个圆,用斜二侧画法画出正视图和俯视图都是边长为 6和4的平行四边形,则该几何体的体积为___________.4.一个圆柱的轴截面是正方形,其侧面积与一个球的表面积相等,那么。</p><p>6、1(2014山东)如图,四棱锥PABCD中,AP平面PCD,ADBC,AB=BC=AD,E,F分别为线段AD,PC的中点()求证:AP平面BEF;()求证:BE平面PAC解答:证明:()连接CE,则ADBC,BC=AD,E为线段AD的中点,四边形ABCE是平行四边形,BCDE是平行四边形,设ACBE=O,连接OF,则O是AC的中点,F为线段PC的中点,PAOF,PA平面BEF,OF平面BEF,AP平面BEF;()BCDE是平行四边形,BECD,AP平面PCD,CD平面PCD,APCD,BEAP,AB=BC,四边形ABCE是平行四边形,四边形ABCE是菱形,BEAC,APAC=A,BE平面PAC3(2014湖北)在四棱锥PABCD中,侧面PCD底面ABCD,PDCD。</p><p>7、一,2017山东济南调研如图,在三棱柱ABCA1B1C1中,AA1C1C是边长为4的正方形平面ABC平面AA1C1C,AB3,BC5.(1)求证:AA1平面ABC;(2)求二面角A1BC1B1的余弦值;(3)在线段BC1上是否存在点D,使得ADA1B?若存在,试求出的值(1)证明在正方形AA1C1C中,A1AAC.又平面ABC平面AA1C1C,且平面ABC平面AA1C1CAC,AA1平面AA1C1C.AA1平面ABC.(2)解由(1)知,AA1AC,AA1AB,由题意知,在ABC中,AC4,AB3,BC5,BC2AC2AB2,ABAC.以A为坐标原点,建立如图所示空间直角坐标系Axyz.A1(0,0,4),B(0,3,0),C1(4,0,4),B1(0,3,4),于是(4,0,0),(0,3,4),(4,3,0。</p><p>8、华夏学校资料库1、已知四边形是空间四边形,分别是边的中点(1) 求证:EFGH是平行四边形AHGFEDCB(2) 若BD=,AC=2,EG=2。求异面直线AC、BD所成的角和EG、BD所成的角。2、如图,已知空间四边形中,是的中点。求证:(1)平面CDE;AEDBC(2)平面平面。 A1ED1C1B1DCBA3、如图,在正方体中,是的中点,求证: 平面。4、已知中,面,求证:面5、已知正方体,是底对角线的交点.求证:() C1O面;(2)面 6、正方体中,求证:(1);(2).7、正方体ABCDA1B1C1D1中(1)求证:平面A1BD平面B1D1C;(2)若E、F分别是AA1,CC。</p><p>9、高中数学立体几何大题及答案解析(理)1.(2009全国卷)如图,四棱锥中,底面为矩形,底面,点在侧棱上,。 (I)证明:是侧棱的中点;求二面角的大小。 2.(2009全国卷)如图,直三棱柱ABC-A1B1C1中,ABAC,D、E分别为AA1、B1C的中点,DE平面BCC1()证明:AB=AC ()设二面角A-BACBA1B1C1DED-C为60,求B1C与平面BCD所成的角的大小3.(2009浙江卷)如图,平面,分别为的中点(I)证明:平面;(II)求与平面所成角的正弦值4.(2009北京卷)如图,四棱锥的底面是正方形,点E在棱PB上.()求证:平面; ()当且E为PB的中点时,求AE与平面PDB所。</p><p>10、1(2013年高考辽宁卷(文)如图,(I)求证:(II)设2.2013年高考陕西卷(文)如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O平面ABCD, . () 证明: A1BD / 平面CD1B1; () 求三棱柱ABD-A1B1D1的体积.3.(2013年高考福建卷(文)如图,在四棱锥中,.(1)当正视图方向与向量的方向相同时,画出四棱锥的正视图.(要求标出尺寸,并画出演算过程);(2)若为的中点,求证:; (3)求三棱锥的体积.4. 如图,四棱锥PABCD中,ABCD为矩形,PAD为等腰直角三角形,APD=90,面PAD面ABCD,且AB=1,AD=2,E、F分别为PC和BD的中点(1)证明:EF面PAD;(2)。</p><p>11、立体几何大题专练1、如图,已知PA矩形ABCD所在平面,M、N分别为AB、PC的中点;(1)求证:MN/平面PAD(2)若PDA=45,求证:MN平面PCD2(本小题满分12分)如图,在三棱锥中,分别为的中点PACEBF(1)求证:平面;(2)若平面平面,且,求证:平面平面(1)证明:连结, 、分别为、的中点,. 2分又平面,平面,EF平面PAB. 5分(2),为的中点,6分又平面平面面8分9分又因为为的中点,10分面11分又面面面12分3. 如图,在直三棱柱ABCA1B1C1中,AC=BC,点D是AB的中点。(1)求证:BC1/平面CA1D;(2)求证:平面CA1D平面AA1B1B。</p><p>12、全国各地高考文科数学试题分类汇编:立体几何1重庆卷20 如图14所示四棱锥PABCD中,底面是以O为中心的菱形,PO底面ABCD,AB2,BAD,M为BC上一点,且BM.(1)证明:BC平面POM;(2)若MPAP,求四棱锥PABMO的体积图142北京卷17 如图15,在三棱柱ABC A1B1C1中,侧棱垂直于底面,ABBC,AA1AC2,BC1,E,F分别是A1C1,BC的中点(1)求证:平面ABE平面B1BCC1;(2)求证:C1F平面ABE;(3)求三棱锥E ABC的体积3福建卷19 如图16所示,三棱锥A BCD中,AB平面BCD,CDBD.(1)求证。</p><p>13、高考立体几何大题及答案1.(2009全国卷文)如图,四棱锥中,底面为矩形,底面,点在侧棱上,。 (I)证明:是侧棱的中点;求二面角的大小。 2.(2009全国卷文)如图,直三棱柱ABC-A1B1C1中,ABAC,D、E分别为AA1、B1C的中点,DE平面BCC1()证明:AB=AC ()设二面角A-BACBA1B1C1DED-C为60,求B1C与平面BCD所成的角的大小3.(2009浙江卷文)如图,平面,分别为的中点(I)证明:平面;(II)求与平面所成角的正弦值4.(2009北京卷文)如图,四棱锥的底面是正方形,点E在棱PB上.()求证:平面; ()当且E为PB的中点时,求AE与平面PDB所成的。</p><p>14、高二(上)数学专题系列 立体几何-体积有关问题 专题1专题一:立体几何大题中有关体积的求法角度问题、距离问题、体积问题是立体几何的三大基本问题。以下是求体积的一些常用方法及有关问题。一公式法1正三棱柱的侧面展开图是边长分别为2和4的矩形,则它的体积为 2.(2011广东卷文9)如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为()A BC D练习3.一个几何体的俯视图是一个圆,用斜二侧画法画出正视图和俯视图都是边长为 6和4的平行四边形,则该几何体的体积为____。</p><p>15、文科高考数学立体几何大题求各类体积方法【三年真题重温】1.【2011新课标全国理,18】如图,四棱锥中,底面为平行四边形,底面() 证明:;() 若,求二面角的余弦值2.【2011 新课标全国文,18】如图,四棱锥中,底面为平行四边形底面() 证明:;() 设,求棱锥的高根据,得即棱锥的高为 3.【2010 新课标全国理,18】如图,已知四棱锥P-ABCD的底面为等腰梯形,ABCD,ACBD,垂足为H,PH是四棱锥的高 ,E为AD中点.(1) 证明:PEBC(2) 若APB=ADB=60,求直线PA与平面PEH所成角的正弦值【解析】命题意图:本题主要考查空间几何体中的位置关系、。</p><p>16、文科立体几何大题复习一解答题(共12小题)1如图1,在正方形ABCD中,点,E,F分别是AB,BC的中点,BD与EF交于点H,点G,R分别在线段DH,HB上,且将AED,CFD,BEF分别沿DE,DF,EF折起,使点A,B,C重合于点P,如图2所示(1)求证:GR平面PEF;(2)若正方形ABCD的边长为4,求三棱锥PDEF的内切球的半径2如图,在四棱锥PABCD中,PD平面ABCD,底面ABCD是菱形,BAD=60,AB=2,PD=,O为AC与BD的交点,E为棱PB上一点()证明:平面EAC平面PBD;()若PD平面EAC,求三棱锥PEAD的体积3如图,在四棱锥中PABCD,AB=BC=CD=DA,BAD=60,AQ=QD,PAD是正。</p><p>17、2017年高考立体几何大题(文科)1、(2017新课标文数)(12分)如图,在四棱锥P-ABCD中,AB/CD,且(1)证明:平面PAB平面PAD;(2)若PA=PD=AB=DC,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.2、(2017新课标文)(12分)如图,四棱锥中,侧面为等边三角形且垂直于底面, (1)证明:直线平面;(2)若的面积为,求四棱锥的体积.3、(2017新课标文数)(12分)如图,四面体ABCD中,ABC是正三角形,AD=CD(1)证明:ACBD;(2)已知ACD是直角三角形,AB=BD若E为棱BD上与D不重合的点,且AEEC,求四面体ABCE与四面体ACDE的体积比4、(2017北。</p>