欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网

综合法与分析法

高中数学第二章推理与证明221综合法与分析法自我小测新人教B版选修121下面叙述正确的是A综合法分析法是直接证明的方法B综合法是直接证法分析法是间接证法C综合法分析法都是从要证的结论出发D综合法分析法都是从已知条件出发2已知集合Mxyxy2Nxyxy4那么集合MN为Ax3y1B31C31D31221

综合法与分析法Tag内容描述:<p>1、第一章,2综合法与分析法课件,1结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法了解分析法和综合法的思考过程和特点2明确分析法和综合法两种方法的证明格式和步骤,能够用这两种方法证明一些数学问题本节重点:综合法和分析法的概念及思考过程、特点本节难点:运用综合法和分析法解答问题,1从命题的_______出发,利用__________________________。</p><p>2、22直接证明与间接证明,1知识与技能了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程和特点2过程与方法进一步体会合情推理、演绎推理以及二者之间的联系与差异,本节重点:综合法和分析法的概念及思考过程、特点本节难点:运用综合法和分析法解答问题从实际问题中命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结果的真实性,从证明过程上认识分析法和综合法的推理过程。</p><p>3、第6章 第6课时(本栏目内容,在学生用书中以活页形式分册装订!)一、选择题1用分析法证明:欲使AB,只需CD,这里是的()A充分条件B必要条件C充要条件 D既不充分也不必要条件解析:分析法证明的本质是证明结论的充分条件成立,即,所以是的必要条件答案:B2要证:a2b21a2b20,只要证明()A2ab1a2b20 Ba2b210C.1a2b20 D(a21)(b21)0解析:因为a2b21a2b20(a21)(b21)0,故选D.答案:D3设alg 2lg 5,bex(x0),则a与b大小关系为()Aab BabCab Dab解析:alg 2lg 5lg 101,而bexe01,故ab.答案:A4设a,b,c(,0),则a,b,c()A都不大于2 B都不小于2C至。</p><p>4、我带领班子成员及全体职工,积极参加县委、政府和农牧局组织的政治理论学习,同时认真学习业务知识,全面提高了自身素质,增强职工工作积极性,杜绝了纪律松散2.2.1综合法与分析法明目标、知重点1.了解直接证明的两种基本方法综合法和分析法.2.理解综合法和分析法的思考过程、特点,会用综合法和分析法证明数学问题.1.综合法从已知条件出发,经过逐步的推理,最后达到待证结论.2.分析法从待证结论出发,一步一步寻求结论成立的充分条件,最后达到题设的已知条件或已被证明的事实.情境导学证明对我们来说并不陌生,我们在之前学习的合情推。</p><p>5、我带领班子成员及全体职工,积极参加县委、政府和农牧局组织的政治理论学习,同时认真学习业务知识,全面提高了自身素质,增强职工工作积极性,杜绝了纪律松散二 综合法与分析法对应学生用书P211综合法(1)定义:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法,综合法又叫顺推证法或由因导果法(2)特点:由因导果,即从“已知”看“可知”,逐步推向“未知”(3)证明的框图表示:用P表示已知条件或已有的不等式,用Q表示所要证明的结论,则综合法可用框图表示为2分。</p><p>6、我带领班子成员及全体职工,积极参加县委、政府和农牧局组织的政治理论学习,同时认真学习业务知识,全面提高了自身素质,增强职工工作积极性,杜绝了纪律松散课时跟踪检测(十五) 综合法和分析法层级一学业水平达标1要证明(a0)可选择的方法有多种,其中最合理的是()A综合法B类比法C分析法 D归纳法解析:选C直接证明很难入手,由分析法的特点知用分析法最合理2命题“对于任意角,cos4sin4cos 2”的证明:“cos4sin4(cos2sin2)(cos2sin2)cos2sin2cos 2 ”,其过程应用了()A分析法B综合法C综合法、分析法综合使用D间接证法解析:选B结合分。</p><p>7、在学生就要走出校门的时候,班级工作仍要坚持德育先行,继续重视对学生进行爱国主义教育、集体主义教育、行为规范等的教育,认真落实学校、学工处的各项工作要求2016-2017学年高中数学 第一章 不等关系与基本不等式 1.4(1) 比较法 综合法与分析法课后练习 北师大版选修4-5一、选择题1设02,只需比较1x与的大小1x0,1x.答案:C2已知a,b,c,d正实数且,则()A BC D以上均可能解析:a、b、c、d为正数,要比较与的大小,只要比较a(bd)与b(ac)的大小,即abad与abbc的大小,即:ad与bc的大小又,adbc,.同理可得。</p><p>8、一岗双责落实还不到位。受事务性工作影响,对分管单位一岗双责常常落实在安排部署上、口头要求上,实际督导、检查的少,指导、推进、检查还不到位。22.1综合法与分析法1理解综合法、分析法的意义,掌握综合法、分析法的思维特点(重点、易混点)2会用综合法、分析法解决问题(重点、难点)基础初探教材整理1综合法阅读教材P63,完成下列问题1直接证明(1)直接证明是从命题的条件或结论出发,根据已知的__________、__________、__________,直接推证结论的真实性(2)常用的直接证明方法有__________与__________【答案】1.(1)定义公理定理(2)综。</p><p>9、二 综合法与分析法教学案教学目标.结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法.了解分析法和综合法的思考过程.教学重、难点重点:会用综合法证明问题;了解综合法的思考过程.难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法.教学过程一、引入:综合法和分析法是数学中常用的两种直接证明方法,也是不等式证明中的基本方法.由。</p><p>10、第五节第五节 综合法与分析法、反证法综合法与分析法、反证法 考纲传真 1.了解直接证明的两种基本方法分析法和综合法;了解分析法和综 合法的思考过程、特点.2.了解间接证明的一种基本方法反证法;了解反证法的思考过 程、特点 1综合法 从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地 接近要证明的结论,直到完成命题的证明,这样的思维方法称为综合法 2分析法 从求证的结论出发,一步一步地探索保证前一个结论成立的充分条件,直到归结为这 个命题的条件,或者归结为定义、公理、定理等,这样的思维方法称。</p><p>11、2.2.1 综合法与分析法教学目标:1结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;2通过本节内容的学习了解分析法和综合法的思考过程、特点;3增强学生的数学应用意识,提高学生数学思维的情趣,给学生成功的体验,形成学习数学知识、了解数学文化的积极态度。教学重点:分析法和综合法的思考过程; 教学难点:分析法和综合法的思考过程、特点教学过程设计(一)、情景引入,激发兴趣。【教师引入】 合情推理分归纳推理和类比推理,所得的结论的正确性是要证明的。数学结论的正确性必须通过逻辑推理的方式加以证明。</p><p>12、2.2.1 综合法和分析法 第2课时 分析法1.关于综合法和分析法的说法错误的是()A.综合法和分析法是直接证明中最基本的两种证明方法B.综合法又叫顺推证法或由因导果法C.综合法和分析法都是因果分别互推的两头凑法D.分析法又叫逆推证法或执果索因法【解析】选C.由综合法和分析法的定义及推理过程可知A,B,D正确,C错误.2.要证+bc,且a+b+c=0,求证:0B.a-c0C.(a-b)(a-c)0D.(a-b)(a-c)0【解析】选C.要证。</p><p>13、2.2.1 综合法和分析法 第1课时 综合法1.设a=lg2+lg5,b=ex(xbB.ab.2.已知a0,b0,则下列不等式中不成立的是()A.a+b+2B.(a+b)4C.a+bD.【解析】选D.因为a0,b0,所以a+b2,所以1,所以.3.下面对命题“函数f(x)=x+是奇函数”的证明不是综合法的是()A.xR且x0有f(-x)=(-x)+=-=-f(x),所以f(x)是奇函数B.xR且x0有f(x)+f(-x)=x+(-x)+=0,所以f(x)=-f(-x),所以f(x)是奇函数C.xR且x0,因为f(x)0,所以=-1,所以f(-x)=-f(x),所以f(x)是奇函数D.取x=-1,f(-1)=-1+=-2,又f。</p><p>14、2.1.2演绎推理项目内容课题2.1.2演绎推理修改与创新教学目标1、 结合已经学过的数学实例,了解直接证明的两种基本方法:2、 分析法和综合法;了解分析法和综合法的思考过程、特点.教学重、难点重点:会用综合法证明问题;了解综合法的思考过程.难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法.教学准备直尺、粉笔教学过程一、复习准备:1. 已知 “若,且,则”,试请此结论推广猜想.(答案:若,且,则 )2. 已知,求证:.先完成证明 讨论:证明过程有什么特点?1. 教学例题: 出示例1:已知a, b, c是不全相等的正。</p><p>15、2.2.1综合法和分析法学习目标1了解直接证明的两种基本方法综合法和分析法2理解综合法和分析法的思考过程、特点,会用综合法和分析法证明数学问题知识链接1综合法与分析法的推理过程是合情推理还是演绎推理?答综合法与分析法的推理过程是演绎推理,因为综合法与分析法的每一步推理都是严密的逻辑推理,从而得到的每一个结论都是正确的,不同于合情推理中的“猜想”2必修五中基本不等式(a0,b0)是怎样证明的?答要证,只需证ab2,只需证ab20,只需证()20,因为()20显然成立,所以原不等式成立预习导引1综合法一般地,利用已知条件和某些数。</p><p>16、二 综合法与分析法1综合法(1)定义从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法综合法又叫顺推证法或由因导果法(2)证明的框图表示用P表示已知条件或已有的不等式,用Q表示所要证明的结论,则综合法可用框图表示为2分析法(1)定义证明命题时,从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法分析法又叫逆推法或执果索因法(2)证明过程的框。</p><p>17、2.2.1 综合法和分析法 第1课时 综合法1.设a=lg2+lg5,b=ex(xb B.a=bC.a0,所以(1+x)2=1+2x+x22x.所以1+x.即ba.又c-b=-(1+x)=0,所以cb即cba.3.已知a0,b0且a+b=2,则()A.a B.abC.a2+b22 D.a2+b23【解析】选C.因为a0,b0,所以a+b。</p><p>18、2.2.1 综合法和分析法 第2课时 分析法1.在不等边三角形中,a为最大边,要想得到角A为钝角的结论,三边a,b,c应满足什么条件()A.a2b2+c2D.a2b2+c2【解析】选C.若角A为钝角,由余弦定理知cos A=0”是“ABC为锐角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.由0A为锐角,而B,C并不能判定,反之若ABC为锐角三角形,一定有0.3.如果ab,则实数a,b应满足的条件是.【解析】由题意知a0,b0,由ab知,a3b3,所以ab0.答案:ab04.补足下面用分析法证明基本不等式ab的步骤:要证明ab,只需证明a2+b2。</p><p>19、第三讲 2.2.1 综合法和分析法班级: 组别: 姓名: 组评: 师评: 【学习目标】了解直接证明的两种基本方法:分析法和综合法;能用分析法和综合法证明【课前准备】1、直接证明:直接从原命题的条件逐步推得结论成立,这种证明方法叫直接证明;直接证明的两种基本方法____________和_____________.综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的_____________,最后推导出所要证明的结论_______________,这种证明方法叫综合法。 框图表示: (其中P表示条件,Q表示要证的结论)。综合法的思维特点是:由因导果,即由已知。</p><p>20、2.2 综合法与分析法课堂探究1如何理解综合法证明不等式剖析:(1)证明的特点综合法又叫顺推证法或由因导果法,是由已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推出所要证明的结论成立(2)证明的框图表示用P表示已知条件或已有的不等式,用Q表示所要证明的结论,则综合法可用框图表示为(3)证明的主要依据ab0ab,ab0ab,ab0ab;不等式的性质;几个重要不等式:a20(aR),a2b22ab(a,bR),(a0,b0)名师点拔 使用综合法时要防止因果关系不清晰,逻辑表达混乱等现象2如何理解分析法证明不等式剖析:(1)证明的特点分析法又。</p>
【综合法与分析法】相关PPT文档
《2 综合法与分析法》课件
高中数学 221《综合法与分析法》同步课件 新人教A选修1
高中数学2.2.1《综合法与分析法》课件新人教B选修
人教B版选修22 2.2.1 综合法与分析法 课件(35张).pptx
高中数学221《综合法与分析法》同步课件新人教A选修
【综合法与分析法】相关DOC文档
高中数学之综合法、分析法与反证法专项练习.doc
高中数学第二章推理与证明2_2_1综合法与分析法学案新人教b版选修1_2
高中数学课时跟踪检测十五综合法和分析法新人教a版选修2_2
高中数学2_2_1综合法与分析法学案新人教b版选修2_2
《二 综合法与分析法》教学案1.doc
高中数学第二章推理与证明2.2.1综合法与分析法教案新人教A版.docx
高中数学第二章推理与证明2.2.1综合法和分析法第2课时分析法课时自测.docx
高中数学第二章推理与证明2.2.1综合法和分析法第1课时综合法达标练.docx
高中数学第二章推理与证明2.2.1综合法和分析法学案含解析新人教A版.docx
高中数学第二讲证明不等式的基本方法二综合法与分析法学案含解析.docx
高中数学第二章推理与证明2.2.1综合法和分析法第1课时综合法课时自测.docx
高中数学第二章推理与证明2.2.1综合法和分析法第2课时分析法达标练.docx
湖北宜昌高中数学第二章推理与证明2.2.1综合法和分析法学案无解答.docx
高中数学第二章推理与证明2.2.1综合法和分析法学案含解析.docx
高中数学第三章推理与证明3综合法与分析法学案北师大版.docx
2018_2019学年高中数学第三章推理与证明3综合法与分析法学案北师大版.docx
湖北省宜昌市高中数学第二章推理与证明2.2.1综合法和分析法学案新人教A版.docx
高中数学第三章推理与证明3.3综合法与分析法1学业分层测评北师大版选修.docx
高中数学第二章推理与证明2.2.1综合法与分析法学案新人教A版选修.docx
高中数学第三章推理与证明3.3综合法与分析法2学业分层测评北师大版选修.docx
高中数学第二章推理与证明2.2.1综合法与分析法教案新人教A版选修.docx
高中数学第二章推理与证明2.2.1综合法与分析法练习含解析新人教A版选修.docx
2016_2017学年高中数学2.2.1综合法与分析法学案新人教B版选修.docx
高考数学复习第十三章推理与证明算法复数13.2综合法分析法与反证法试题理.docx
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!