




已阅读5页,还剩47页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
买文档就送您 纸全套, Q 号交流 401339828 或 11970985 1 目 录 中文摘要 3 第一章 绪论 4 4 5 题的研究意义 7 究方向 8 第二章 三环减速器的分析 9 三环减速器的组成及工作原理 9 环减速器的传动比 12 第三章 三环减速器的结构设计 14 环减速器的设计计算步骤 14 齿计算 15 步计算齿轮主要参数 15 环减速器齿轮副啮合 参数计算 17 环减速器的结构设计 26 2 第 四 章 总结 49 致 谢 51 参考文献 52 买文档就送您 纸全套, Q 号交流 401339828 或 11970985 3 中 文 摘 要 三环减速器是少齿差行星齿轮传动中的一种。本文介绍了三环减速器的概况,三环减速器的组成及工作原理, 三环减速器的传动比,并对其结构参数做了详细 的设计等。 关键词 : 三环减速器;传动比;结构设计 4 第一章 绪 论 三环减速器是 少 齿差行星齿轮传动中的一种。它由一个外齿轮与一个内齿轮组成一对内啮合齿轮副,采用的是渐开线齿形,内外齿轮的齿数相差很小(通常为 1、2、 3或 4),故简称为少齿差传动。三环减速器是由重庆钢铁设计院陈宗源高级工程师在 1985 年申请的发明专利,它以其适用与一切功率、速度范围和一切工作条件的优点而受到了广泛关注。 环减速器的概况 齿轮减速器在各行各业中十分广泛地使用着,是一种不可缺少的机械传 动装置。当前减速器普遍存在着体积大、重量大,或者传动比大而机械效率过低的问题。国外的减速器,以德国、丹麦和日本处于领先地位,特别在材料和制造工艺方面占据优势,减速器工作可靠性好,使用寿命长。但其传动形式仍以定轴齿轮传动为主,体积和重量问题,也未解决好。最近报导,日本住友重工研制的 国 传动原理和结构上与本项目类似或相近,都为目前先进的齿轮减速器。当今的减速器是向着大功率、大传动比、小体积、高机械效率以及使用寿命长的方向发展。因此,除了不断改 进材料品质、提高工艺水平外,还在传动原理和传动结构上深入探讨和创新,平动齿轮传动原理的出现就买文档就送您 纸全套, Q 号交流 401339828 或 11970985 5 是一例。减速器与电动机的连体结构,也是大力开拓的形式,并已生产多种结构形式和多种功率型号的产品。目前,超小型的减速器的研究成果尚不明显。在医疗、生物工程、机器人等领域中,微型发动机已基本研制成功,美国和荷兰近期研制的分子发动机的尺寸在纳米级范围,如能辅以纳米级的减速器,则应用前景远大。 内发展的状况 国内的减速器多以齿轮传动、蜗杆传动为主,但普遍存在着功率与重量比小,或者传动比大而机械效率过低的问题。另外, 材料品质和工艺水平上还有许多弱点,特别是大型的减速器问题更突出,使用寿命不长。国内使用的大型减速器( 500多从国外(如丹麦、德国等)进口,花去不少的外汇。 60年代开始生产的少齿差传动、摆线针轮传动、谐波传动等减速器具有传动比大,体积小、机械效率高等优点。但受其传动的理论的限制,不能传递过大的功率,功率一般都要小于40于在传动的理论上、工艺水平和材料品质方面没有突破,因此,没能从根本上解决传递功率大、传动比大、体积小、重量轻、机械效率高等这些基本要求。90年代初期,国内出现的三环(齿轮)减 速器,是一种外平动齿轮传动的减速器,它可实现较大的传动比,传递载荷的能力也大。它的体积和重量都比定轴齿轮减速器轻,结构简单,效率亦高。由于该减速器的三轴平行结构,故使功率 /体积(或重量)比值仍小。且其输入轴与输出轴不在同一轴线上,这在使用上有许多不便。 6 北京理工大学研制成功的 “ 内平动齿轮减速器 ” 不仅具有三环减速器的优点外,还有着大的功率 /重量(或体积)比值,以及输入轴和输出轴在同一轴线上的优点,处于国内领先地位。国内有少数高等学校和厂矿企业对平动齿轮传动中的某些原理做些研究工作,发表过一些研究论文,在利用摆线 齿轮作平动减速器开展了一些工作。平动齿轮减速器工作原理简介 ,平动齿轮减速器是指一对齿轮传动中,一个齿轮在平动发生器的驱动下作平面平行运动,通过齿廓间的啮合,驱动另一个齿轮作定轴减速转动,实现减速传动的作用。平动发生器可采用平行四边形机构,或正弦机构或十字滑块机构。本成果采用平行四边形机构作为平动发生器。平动发生器可以是虚拟的采用平行四边形机构,也可以是实体的采用平行四边形机构。有实用价值的平动齿轮机构为内啮合齿轮机构,因此又可以分为内齿轮作平动运动和外齿轮作平动运动两种情况。外平动齿轮减速机构,其内齿轮作平 动运动,驱动外齿轮并作减速转动输出。该机构亦称三环(齿轮)减速器。由于内齿轮作平动,两曲柄中心设置在内齿轮的齿圈外部,故其尺寸不紧凑,不能解决体积较大的问题。内平动齿轮减速,其外齿轮作平动运动,驱动内齿轮作减速转动输出。由于外齿轮作平动,两曲柄中心能设置在外齿轮的齿圈内部,大大减少了机构整体尺寸。由于内平动齿轮机构传动效率高、体积小、输入输出同轴线,故由广泛的应用前景 。 买文档就送您 纸全套, Q 号交流 401339828 或 11970985 7 课题研究意义 ( 1)减速比大,三环式单级减速比为 11 到 99, 双级传动比达 9801。 普通外啮合齿轮减速器单级减速比最大为 10。 ( 2)体积小重量轻,外啮合齿轮只在一点捏合,接触应力是影响传动的瓶颈,三环式三点啮合,接触处两齿轮曲率半径在同侧,尺寸接近,接触面积大,接触应力小,设计是用不着核算接触应力,只要弯曲应力够就行了,由于三环式中间外齿轮齿数较多,其抗变曲性能也较,据有关资料介绍同扭矩的减速器,三环式重量只有普通减速器的 1/3,体积只有 1/4。这里无疑有巨大的经济效益。 ( 3)承载能力高,轴承寿命长。由于采用少齿差内啮合传动, 三环式除了三点啮合外,在过载时由于齿的弹性变形,会有很多齿同 时工作, 所以齿轮的承载能力较高;另外 由于接触应力小,有利于润滑,三根轴上的载荷都呈120度角均匀分布, 转臂轴承位于内齿圈外,起布置空间大, 所以轴的弯曲应力小,主轴承载小,有利于承受过载载荷, 因而转臂轴承的寿命较高,可达到 2 万小时以上 。 ( 4)制造容易、成本低,由于对接触强度及弯曲强度都要求不高,轴的应力也较一般的低,所以对材质、热处理无特殊要求,调质就可以了,齿轮精度 8 一般为 8 级,能生产原少齿差的制造厂都能生产。 对于采用 7 级精度齿轮的这种减速器,其传动误差可在 1左右。 ( 5) 精度高。由于三片内齿轮同时与外齿 轮啮合,误差可以相互弥补,所以整机精度高。 ( 6)适应性广。根据不同的应用场合,可以制成卧式,立式,法兰联结式等各种结构形式。 ( 7)轴向尺寸小,径向尺寸大。有两根高速轴,可以单轴输入,也可以双轴输入。输入轴与输出轴平等,而且中心距与齿轮参数无关,根据需要设计。 ( 8)效率高。由于取消了输出机构,而且转臂轴承受力较小,其效率可达 92 到96%。 研究方向 本课题研究的方向是内齿行星齿轮减速器。即利用内齿行星齿轮减速器的减速作用将高速运转的输出轴的转速降低以连接到输出设备,得到适合工作的转速。目前我国 正处于社会主义发展和全面建设小康社会的关键时期,对工业的需求也是与日俱增。减速器则是工业中的一个重要装置。由于内齿行星齿轮减速器技术具有传动比大、精度高、承载能力高、轴承寿命长、适应性广、结构简单、制造维修方便、成本低等优点,因此,三环减速器以及内齿行星齿轮减速器广泛的应用与矿山、冶买文档就送您 纸全套, Q 号交流 401339828 或 11970985 9 金、飞机、轮船、汽车、机床、起重设备、电工机械、仪表、化工、轻工业、医药、农业等许多领域 。这类减速器有着广泛的发展前景,是减速器行业更新换代的产品,应大力推广和宣传,让这一新技术产品为我国社会主义建设做出更大的贡献。 第二章 三环减速器的分析 三环减速器是一种利用三相并列双曲柄机构来克服死点的少齿差行星齿轮减速器, 具有传动比大、适用范围广、承载能力强、重量轻、传动效率高、轴承受力小、寿命长等许多独特的优点,在各行业得到了广泛的应用。但是由于 三环减速器问世时间短,缺乏全面完整的理论分析和实验研究,在设计中只能以类比法或借助于简化模型进行计算,使得产品的性能不稳定,设计参数偏大,造成材料没有得到最充分的利用,影响了这种传动形式的进一步发展。本文应用位移协调原理,从系统变形的角度,建立了三环减速器的动力分析精确模型,并对三环减速器 进行求解,研究了各种因素对其动力特性的影响,为正确设计三环减速器提供了科学的理论依据。 三环减速器的组成及工作原理 三环减速器是由平行四边形机构和内啮合齿轮机构组成的复合传动机构。图2置 式 三环减速器的结构和传动简图。两根互相平行且各具有三个偏 10 心轴颈的高速轴 2和 3,动力通过其中任一或两轴同时输入,有动力输入的曲柄轴称为输入轴 2,无动力输入的曲柄轴称为支承轴 3。平行四边形机构的曲柄 6和 7一般制成偏心套的形式,其结构见图 2行四边形机构的连杆上带有内齿轮,称为内齿环板 1,图 2出轴 4和外齿轮 5通常制造成为一体成为齿轮轴。当输入轴 2旋转时,由偏心套曲柄 6和 7带动的行星轮内齿环板 1不是作摆线运动,而是通过一双曲柄机构 (具有偏心轴颈的高速轴 )引导作圆周平动, 三片并列的连杆行星齿板(即内齿环板 1)通过轴承装在高速轴 2和 3上且与外齿轮 5相啮合输出动力,啮合的瞬间相位差为 120。 当平行四边形机构的连杆运动到与曲柄共线的两个位置 (0和 180) 时,机构的运动不确定,通常把这种运动不确定位置称为死点位置。为了克服机构在死点位置的运动不确定,最常用的方法是采用三相平行四边形 机构并列布置,也就是用三块内齿环板并列且各相环板之间互成 120的相位角。当某一相平行四边形机构运动到死点位置时,由其它两相机构传递动力,从而克服死点。采用这种并列方式,不仅可以利用多相机构共同承担载荷,还可以使机构在运动平面内的摆动力相互平衡。 买文档就送您 纸全套, Q 号交流 401339828 或 11970985 11 图 2置式三环 减速器基本结构 图 2置 式 三环减速器传动简图 图 2偏心套 图 2齿环板 1. 内齿环板 2. 输入轴 3. 支承轴 4. 输出轴 2 3416 751234 57 64 56 712 3576 12 5. 输出轴外齿轮 6. 输入轴偏心套 7. 支承轴偏心套 图 2称式三环减速器基本结构 图 2称 式 三环减速器传动简图 根据两根高速轴(输入轴 2 和支承轴 3)和输出轴 4 之间不同的位置关系,三环减速器有两种基本的形式:偏置 式 和对称 式 。当输入轴和支承轴位于输出轴的同一侧时,称为偏置 式 三环减速器(见图 2图 2当两根高速轴(输入轴和支承轴)相对于输出轴两侧对称布置时,称为对称 式 三环减速器,如图 2 2 环减速器的传动比 图 2环减速器的传动比计算 当输入轴旋转时,内齿环板作圆周平动。不计运动副间的摩擦,无论 曲柄 2 的连线总是与 曲柄同 相位 ,2B=e。内齿圈与V/O 2文档就送您 纸全套, Q 号交流 401339828 或 11970985 13 外齿轮的啮合点 长线上。 设内齿圈的齿数为 齿轮的齿数为 内齿圈的分度圆半径22 21 ,外 齿 轮 的 分 度 圆 半 径11 21 (m 为 模 数 ) , 曲 柄 长 度)(21 12121 o 。设曲柄 , 则 e,因为内齿环板为平动构件,在同一瞬时,平动构件上各点运动的轨迹形状和各点的速度均相同,故内齿圈和外齿轮的啮合点 B,即 )(21 12 设外齿轮的角速度 (即输出轴的角速度 )为 ,则 )(2121 1211 112 z 由传动比的普遍公式: 12 1 (2式中 i 传动比 14 外齿轮的齿数 内齿轮的齿数 负号表示输入轴与输出轴的转动方向相反。当内、外齿轮的齿数相差很小(通常为 1、 2、 3 或4)时,三环 减速器的传动比大,具有结构紧凑的优点。 第三章 三环减速器的结构设计 本章将在理论分析的基础上 对三环减速器进行结构设计。由于三环减速器的内齿圈和外齿轮相啮合时的齿数相差比较小,一般为 14。为了避免内、外齿轮之间的齿廓重迭干涉、保证足够的重合度,需要采用变位齿轮传动,所以三环减速器的内、外齿轮变位系数的确定,是设计的重要内容之一。本章将主要确定齿轮副的啮合参数,进行变位系数计算,以 及对主要零部件的结构进行设计和强度校核计算。 三环减速器的设计计算步骤 由于没有专门的三环减速器方面的设计资料,在三环减速器的结构设计时,通常参考少齿差行星齿轮减速器的结构设计步骤进行。本课题的已知条件为:传动比i=30,输出的负载扭矩为 1000Nm,转速: 1500r/ 三环减速器结构设计的计算步骤: 买文档就送您 纸全套, Q 号交流 401339828 或 11970985 15 ( 1) 三环减速器的总体结构设计; ( 2) 配齿计算 ; ( 3) 初步计算齿轮的主要参数; ( 4) 齿轮副啮合参数的计算; ( 5) 三环减速器的结构设计; ( 6) 三环减速器行 星齿轮传动的强度验算。 齿计算 根据( 3 121 zz ( 3 已知 30i 即 30121 zz 93,90 21 初步计算齿轮的主要参数 齿轮材料的选择、类型、精度等级、及齿数 16 齿轮材料及热处理是影响齿轮承载能力和使用寿命的关键因素,也是影响齿轮生产质量和加工成本的主要因素。齿轮材料的选择应综合地考虑到齿轮传动的工作情况、加工工艺和材料来源及经济性等条件。 ( 1)按本课题的传动方案,选用直齿圆柱齿轮传动; ( 2)本设计的内齿环板、外齿轮的材料皆采用 45号钢调质处理 55。外齿板的加工精度 6级,内齿圈的加工精度 7级; ( 3)外齿轮齿数 0,内齿轮齿数 3。 齿数差为 3。 齿轮传动主要参数的计算 三环减速器强度计算时最常用的办法是按照齿面接触 强度初算小齿轮的分度圆直径 m。 根据给出的已知条件,本设计按照齿根弯曲强度初算齿轮的模数: 3(3式中 : 算式系数,对于直齿轮传动: 综合系数, =A 使用系数, 买文档就送您 纸全套, Q 号交流 401339828 或 11970985 17 计算弯曲强度的行星轮间载荷分布不均匀系数, 0,由公式+=1+= 小齿轮齿形系数, 齿轮副中小齿轮的齿数,即输出轴外齿轮的齿数 0; 试验齿轮弯曲疲劳极限; d 小齿轮齿宽系数, d= 啮合齿轮副中小齿轮的名义转矩, Nm; 23l i 取齿轮模数为: m=2 三环减速器齿轮副啮合参数的计算 三环减速器齿轮副的啮合参数包括齿轮副啮合的变位系数和啮合 角。要想设计出既经济又合理的三环减速器,必须选择恰当的变位系数和啮合角。 由于三环减速器采用的是少齿差内啮合传动,容易产生各种干涉,因此在设计时要注意一些限制条件。 三环减速器内啮合齿轮副的干涉 18 三环减速器在设计时避免产生干涉应该注意的一些限制条件: ( 1)不发生过渡曲线干涉; ( 2)不发生渐开线干涉; ( 3)保证足够的顶隙; ( 4)不发生节点对面的齿顶干涉; ( 5)必须保证不产生齿顶干涉和齿廓重 迭 干涉,应满足 ; ( 6)避免内、外齿轮沿径向移动发生的径向干涉等; ( 7)保证重合度 大于 1; ( 8)为了保证渐开线齿廓,内齿轮的齿顶圆必须大于基圆; ( 9)为了避免轮齿的磨损,内、外齿轮的齿顶不得变尖,并且要有足够的厚度,齿顶厚度必须大于 ()m。 位系数选择时应该满足的主要限制条件: 在选择三环减速器的变位系数时,首先应该满足内啮合的啮合方程式: t 21212 zz v (3虽然设计三环减速器的限制条件很多,但是在设计和实际使用中通常只需满足以下两个主要限制条件 11: 买文档就送您 纸全套, Q 号交流 401339828 或 11970985 19 ( 1)按啮合中 心距 a装配时,保证齿轮副不产生齿廓重叠干涉:即应满足齿廓重叠干涉系数 0 。即: 0)()()( 12222111 i n n n 44a r c c o ad 44a r c c o ad )*(2 111 )*(2 222 ( 2)保证不发生齿顶干涉,必须满足内啮合齿轮副的重合度 1 1)t a n( t a n)t a n( t a n2 1 2211 aa 以上公式中各符号的含义 : 外齿轮齿顶圆直径; 内齿轮齿顶圆直径; 外齿轮齿顶圆压力角; 内齿轮齿顶圆压力角; a 齿轮副实际啮合中心距; 压力角 =20; 20 外齿轮齿数 0; 内齿环板上的内齿轮齿数 3; 外齿轮变位系数; 内齿轮变位系数; 齿廓重迭干涉系数; 内啮合齿轮副的重合度; 齿顶高系数; 外齿轮的分度圆直径; 内齿轮的分度圆直径。 由公式( 3知:在 一定时,变位系数 的大小。啮合角 是变位系数的函数 , 变位系数 实质上是决定三环减速器 能否消除干涉现象的问题。对于一对啮合齿轮 , 可把变位系数 而把自己确定的参数作为常量 , 即限制条件是变位系数的函数。因此 ,满足两个主要限制条件的问题便可归结为求合适的变位系数的问题。 三环减速器变位系数的确定 把变位系数 啮合角 取为中间变量,求解方程组就可以得出变位系数 由于限制条件中有许多超越方程,直接求解变位系数买文档就送您 纸全套, Q 号交流 401339828 或 11970985 21 是非常困难或是不能求解的。因此,下面用逐步逼近的迭代方法来求得同时满足两个限制条件的变位系数。计算步骤 如下: ( 1)要求达到 = = 和 别为设计要求达到的三环减速器内啮合的重合度和齿廓重叠干涉系数。 ( 2)确定 、 初选 = =20。少齿差所选择的齿顶高系数 有统一的规定,可在 55。但是应该考虑到采用短 齿和变位相结合的方式才是避免干涉出现的最好办法。研究表明 54,齿顶高系数选择合适,啮合角就随着降低,对提高啮合效率和行星轮轴承寿命有利。 取 )0(1 x ,计算几何尺寸及参数。模数为 。 8090211 8693222 b b 6)22( )0(1*11 )0(112)0(2 t ()( n vi n v 1 2 0t a )9093( )22( )0(2*22 22 s ()co s ( 0 8 4ar c co s ()co s (2/)9093(22/)( 12 0 o s 20c o o sc o s t a nt a nt a nt a 2211 aa (3 a a a a r r c c r c c 221221221 (3r r c c 22222 1222 (3093()0)()()( 22212111 i n vi n vi n vi n n n (3计算四个偏导数: 买文档就送您 纸全套, Q 号交流 401339828 或 11970985 23 a o s1s a ns o a o s1s a ns o o i o i i i i i i 5c o s (i i i o i c o ss i nc o ss i ns i ns i ns i ns i ns i n)c o s (s i ns i ns i nc o ss i 24 o i o i i i i i i 5c o s (i i i o i c o ss i nc o ss i ns i ns i ns i ns i ns i n)c o s (s i ns i ns i nc o ss i 计算 )1(2)1(1 , 相应的 212121,),( (3 221121211,),(,),(),(3 买文档就送您 纸全套, Q 号交流 401339828 或 11970985 25 ),(,),(,),(211211212(3),(),()(2)(1)(2)(11)(1)1(1 (3),(),()(2)(1)(2)(12)(2)1(2 ( 3 带入 )t 1212 zz va n v 将 ) 、 ) 和 代入重合度 ( 3 3得到 : a a a a a nt a nt a nt a aa 093()0)()()( 22212111i n vi n vi n vi n n n (3显然需要根据得出的数值按上述步骤重新进行设计计算,每一次迭代都能得出相应的结果,经四次迭代可以满足要求, 最后得到的计算结果如下所示: =; = 26 表 3齿轮啮合参数表 序 号 名 称 符 号 外 齿 轮 内 齿 轮 1 模数 m 2 2 原始齿形角 20 3 齿顶高系数 啮合角 5 齿轮的齿数 z 90 93 6 变位系数 x 实际啮合中心距 a 分度圆直径 d 180 186 三环减速器的结构设计 输出轴的结构设计及校核 进行轴的强度设计及校核时,应根据轴的具体受载及应力情况,采用相应的计算方法,并恰当地选取其许用应力。 (1) 初步确 定输出轴的最小直径 买文档就送您 纸全套, Q 号交流 401339828 或 11970985 27 初步确定轴的最小直径可按照公式 18 3 5(3或 3 (3来确定。 式中: T 轴传递的扭矩 (550000d 计算剖面处轴的直径( P 轴传递的功率( n 轴的转速( r/ 轴的许用扭转应力( 按照 定的系数 根据本设计给出的已知条件带入公式 ( 3计算比较合适,得到轴的最小直径: 0 0 9 5 5 0 0 0 01 5 0 0101 0 0 01 1 5 3330m i n 考虑到轴上有一个键槽,直径可加大 47,考虑到安全性,取 0 (2) 输出轴的结构布置方案 输出轴采用实心轴的形式,因为轴的直径不大,通常采用齿轮轴的结构,按照上式初步确定所计算截面处轴的直径,同时进行轴的其他部分的结构设计。为了便于轴上零件的装拆,将齿轮轴制成阶梯轴,三块内齿板与输出轴外齿轮啮合处选 择同样的直径,便于加工制造。为使内、外齿轮的啮合正常这行,外齿轮的宽度应该 28 大于两端最外侧内齿环板 310上定位采用轴肩和定距环相结合的方式。轴的两端采用滚动轴承固定于减速器箱体。动力输出端设计一个键槽通过键与工作机相连接 具体结构及尺寸见零件图。 图 3 图 3输出轴的三维实体造型图 (3) 输出轴的强度校核 根据齿轮模数和齿数,分度圆直径为 240出轴的受力分析如图 2: c 每个啮合齿轮所受的啮合力, 就是输出轴上的外齿轮所受环板作买文档就送您 纸全套, Q 号交流 401339828 或 11970985 29 用力的总和( N)。 根据啮合力的变化规律,在 275 工况角时,每块内齿环板所受的啮合力最大,也就是啮合齿轮所受的啮合力最大,为最危险工况,所以选择 275 进行轴的强度校核。 将轴上的力先平移到输出轴的轴线上,后沿水平和竖直两个方向 分解得: )90s ),90c o s (11 (3另外一块环板施加的力与第一块环板施加的力相差 180 ,则对应的有: 。)18090s ),18090c o s (22 (3由于三块内齿环板的受力情况相同,因此只拿其中一块环板校核即可。 当 275 时,作用在与第一、二内齿环板相啮合的外齿 轮上的啮合力分别为: 590s 0s 590c o s (0c o s (11 30 8090s o s (2090c o s (22上式中正(负)号表示该力与坐标轴正向相同(相反)。 根据上述数值画出输出轴在竖直平面内的受力图如图 3 竖直平面的约束反力: 图 3出轴在竖直平面内的受力图 由平面力系的平衡方程: 00 )4665()46466565()466565(214621 21112得到轴承处的约束反力为 3买文档就送您 纸全套, Q 号交流 401339828 或 11970985 31 A Y /2P 1Y /2123图 3出轴在竖直平面的弯矩图 图 3直平面内拐点的弯矩值: k N m m k N m 546(0652146 12 图 3 32 R x /2 P 1x /21 2 3图 3由平面力系 的平衡方程: 00 )4665()46466565()466565(214621 21112得到轴承处的约束反力为 0 R X /2P 1X /21 2 3图 3出轴在水平平面内的弯矩图 买文档就送您 纸全套, Q 号交流 401339828 或 11970985 33 图 3输出轴在水平平面内的弯矩图。水平面内的拐点的弯矩值为: k N m m k N m 546(065214612 由弯矩图得 1、 2、 3截面的合成弯矩 为: 2221211 2223233 2222222 经比较得知,输出轴上的最大弯矩 : a x 扭矩最大值为 T=1000此可知,最危险截面在 2或 3处,其轴的强度校核应采用 )(101322 (3 34 或 3122)(10 (3公式进行验算。 式中: 轴计算截面上的工作应力( d 轴的直径( 输出轴采用实心轴的形式; M 轴计算截面上的合成弯矩( N T 轴计算截面上的扭矩( N 根据扭转应力变化性质而定的校正系数: = 许用疲劳应力( 45钢调质 180207 此根据输出轴的受力状态,由最大弯矩 入公式 (3得出输出轴在 2截面处的最小轴径为: 0 01032232 输出轴在 3截面处的最小轴径为: 0103 2233 输出轴零件图上所取的输出轴的所有轴径都大于这两个数值,输出轴的轴径满足强度要求。 买文档就送您 纸全套, Q 号交流 401339828 或 11970985 35 输入轴的结构设计及校核 (1) 初步确定输入轴的最小直径 选取轴材料为 45钢, 15,根据公式 0 0 0 09 5 5 0 0 0 04 5 0 0 0 5 330m i n 因为轴上有三个键槽,适当加大最小轴径 1015%。可以取 20上即可。 (2) 输入轴的结构布置方案 考虑到输入轴是动力输入端 ,有一个与联轴器相连接的键槽,另外与三片内齿环板相连接的地方有三个沿着圆周方向分别间隔 180分布的键槽,因此,取输入轴最小直径为 45了便于轴上零件的装拆,将齿轮轴制成阶梯轴,轴上定位采用轴肩和定距环相结合的方式。轴的两端采用滚动轴承固定于减速器箱体。 (3) 输入轴的强度校核 输入轴的受力图如图 2危险工况下行星轴承作用于输入轴上的力分别为: 6 4 s )1(3)1(31 o ss 1(3)1(31 5 6 s )2(3)2(32 36 o ss 2(3)2(32 正负号表示受力的正负向。 1 输入轴的约束反力求解及各个关键截面的弯矩值 根据上述数值将输入轴在竖直平面的受力情况画出,如图 3平面力系平衡方程得: R 2y /2图 3输入轴在竖直平面内的受力图 R y /22y /2图 3输入轴在竖直平面内的受力图和弯矩图 买文档就送您 纸全套, Q 号交流 401339828 或 1197098
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024六年级英语上册教学设计
- 2025年中国旅游代理与合作伙伴间的合作合同
- 邵阳高三地理试卷及答案
- 三中高一试卷及答案
- 2025停车场租赁合同模板
- 经济型酒店品牌危机应对策略考核试卷
- 稻谷加工与粮食质量标准制定考核试卷
- 照明工程的电气设备选型与应用考核试卷
- 电子传感器与检测技术考核试卷
- 2025住宅设计与装修合同示范文本
- 外包免责协议书模板
- 广东省广州市2025届普通高中毕业班综合测试(二)物理试题(含答案)
- 广东省惠州市惠阳区知行学校2024-2025学年七年级下学期4月期中数学试题(含部分答案)
- 2025年深圳市九年级中考语文二模联考试卷附答案解析
- 集体备课培训讲座
- 危废处置方案
- 大部分分校:地域文化形考任务四-国开(CQ)-国开期末复习资料
- 2024年共青团入团积极分子考试题库(附答案)
- MOOC 职场英语-西南交通大学 中国大学慕课答案
- 2069-3-3101-002WKB产品判定准则-外发
- 升压站场区绿化专项施工方案
评论
0/150
提交评论