人人文库网 > 图纸下载 > 毕业设计 > 离合器设计-东风小霸王系列发动机(最大转矩:205-4500(Nmrmin)(全套含CAD图纸)
离合器设计-东风小霸王系列发动机(最大转矩:205-4500(Nmrmin).doc
离合器设计-东风小霸王系列发动机(最大转矩:205-4500(Nmrmin)(全套含CAD图纸)
收藏
资源目录
压缩包内文档预览:(预览前20页/共33页)
编号:1028956
类型:共享资源
大小:2.29MB
格式:RAR
上传时间:2017-02-17
上传人:机****料
认证信息
个人认证
高**(实名认证)
河南
IP属地:河南
50
积分
- 关 键 词:
-
离合器
设计
东风
小霸王
系列
发动机
最大
转矩
nmrmin
全套
cad
图纸
- 资源描述:
-









- 内容简介:
-
机械装备寿命的可靠 构建与优化设计 摘要: 维护设计对于机电产品或系统的寿命周期来讲,是一种重要的设计方法。基于机构作用可能会出现失败的几率,机械系统的可靠性建模被发展了起来。基于部件可能会出现失败的情况,机械系统的可靠性建模就被发展了起来而系统最小的可靠性和最稳定的可靠性系数被定义为机械系统在寿命周期内大致的可靠性。其次,提出维护的一个基于可靠性的设计最优化模型, 总生活周期 消耗 被考虑 作为 设计目标和系统可靠性 。最终,维护的基于可靠性的设计最优化方法通过组分设计示范被说明。 关键词 :维护 ; 可靠性 ; 模拟 ; 优化设计 1. 介绍 在一个机械产品期间的生命周期,维护是非常重要 的,可以 保持产品可利用时间和延长它的寿命。 关于维护的研究机械产品的大致被分类为 以下 三种: (1)如何拟定维护政策或 (和 )如何优选考虑系统可靠性和维修费用的维护期间 14。(2)发展维护方法和工具保证系统维护到低成本和短的修理时间,例如发展特别的维护工具 59。 (3)在设计程序期间,为维护设计,系统可维护性 地 被评估和被改进 1012。维护在设计之初就开始了。 明显地,维护的设计方法论,是其中一个在产品的生命周期的最佳的有效的维护手段, 吸引许多 研究者的兴趣。然而, 维护设计的研究主要在于两个领域。 一个是在产品设计选择的可维护性评估 ; 另一个 是为方便维护设计的 特殊结构的零件 。在本文 中 ,根据时间对失败零件的密度函数, 要调查 接受维护的一个机械系统 的 零件的服务 寿命 。然后机械系统的可靠性模型被重建并且被 仿真 。 最终, 维护的新颖的设计最优化方法 通过一个链式设计被发展并说明。 2. 可靠性塑造维护的机械系统 型假定 在一个机械系统运行 一段时间 之后,由于失败的 被 替换分开,主要可靠模型是不适用 于 改变系统,因而应重建可靠性模型。 在本文谈论的机械系统有以下 特征: 一个 系统包括很 多 同样 的 零件,零件的数量在系统期间的一生周期是恒定的。 所有零件的时间对失败密度分布函数是 相同 的, 并且 替换件 也 和原始的零件一样有失败分布函数。 每个部分的失败是一个任意 的 独立事件, 也就是说 一部分的失败不影响其他部分在系统的 中 的失败。 维护的可靠性 建模 一个机械系统的可靠性取决于它的零件, 可靠性和失败的可能性取决于他们的工作寿命。在这里 ,根据时间的密度分布函数对零件的 失效 , 应计算好部件在机械系统中工作寿命 ,然后 开发 机械系统的可靠性模型 。 在一个机械系统的服务期间,发生故障的有些零件 要求及时替换,因此机械系统的部分的 寿命 分布被改变了。推测在机械系统运行 一段时间后 中 是维护活动之间的时间,即维护间隔时间之后, 单位可以是几小时、几天、几个月或者几年。 如果 表零件的年龄比例在 n 用年龄 而部分的年龄分布在时间 上 表示 为 矩阵 L、 L, 。零件的失败密度函数和部分的寿命 分布在系统的确定 寿命 分布在下次或者 在下一段时间区内留下来的部分目录。寿命分布取决于每一段时间内每一部分部件在下一段时间区 内失效的几率。要发现零件的失 效 可能性失败密度函数 是从零开始的。 存留下来的数量在下一个时间段得到提升,失效的部分被新的部件替换被重新返回第一个盒子里。 最初 的 ,所有零件是 新的病在第一个盒子里 。 即在 ,在第一个箱子的部分 是 P0(1 (1) 在 ,第一个箱子的年龄分数和第二个箱子代表 : P1(p0(1- f(x)P0(p0( f(x) (2) 两 种寿命盒子内 的部分 , 生存并且到下个 寿命 箱子, 而 不合格 部件 的部分 被新的零件替换 ,从这 两个箱子 到 第一个箱子 。 在 2, 计算 前三个箱子的比例 P2(p1(1- f(x)P1(p0(1- f(x)P0( p1( f(x)p0( f(x) (3) 因此,通过使用以下等式,在 在每个 箱内的部分部件将 被 进行如下 计算 : 当 P0(寿命在 部件总量的一小部分时,代表了部件刚刚被投入使用。这就意味着 P0(这部分的失效率,或者说是小部件的代替。换种说法就是说,这些在第一个盒子里的一小部分部件在 t0,用来取代失效部件的新部件。 一系列的系统包含了 N 个有相同失效概率分布的部件,每一个部分只是一系列的单元,每个单元是相对独立的。 在同一系列系统里任何一个单元的失效表现 为一个系统的失效,按照可能增长的原则, 一系列系统的可靠性就是: 由于组成系统的部件数量是恒定的,在此,机械系统维护的系统稳定性被定义为: 3. 维护可靠性的模拟仿真 模拟仿真的结果显示了系统的稳定性在工作期间是不断变化着的。一个系统的可靠性经历了几次波动,有时是最大值而有时是最小值,最终达到一个稳定的值。 系统稳定性的震动会周期性的衰减,这段时间是部件 的预期寿命(根据韦伯分布,参数 近似于大 的预期寿命) 。 对于机械系统的设计和维护,系统稳定性的最小值跟稳定值是最重要的。系统的最低稳定性出现在初始阶段,但系 统可靠性的稳定值出现在运行一段很长时间后。在此,为了后面方便讨论,系统维护的最低可靠性和稳定可靠性被定义为 基于如图 6 所示的系统稳定性的仿真结果中。 由于它发生在初始阶段,系统最小可靠性会在从 t=0 到 t=2的仿真结果的不相关联的可靠性值中找到。最小可靠性被定义为: 假设仿真时间是 别代替了在 t T ,T + 2 的最大值和最小值。一旦当最大可靠性值和最小可靠性值的比值 满足,系统可靠性被认为在 达到一个稳定的值。因此,系统稳定性或者说稳定可靠性被定义 为: 1 是稳定的要求,通常是 98%。 如果 存在,系统稳定性是不稳定的。 4. 可靠性的优化设计模型库 对于维护的一个基于可靠性优化设计模型被用来跟耗费维护的系统可靠性和寿命周期消费来代替,上述模型对于计算系统的部件替换率,最小可靠性和系统可靠性有帮助。 在这个模型里, 寿命周期的消耗被认为是一个设计目标,而系统的可靠性被认为是设计约束条件。我们的工作目标就是要去找到一个最小消耗的设计方法并同时满足这个系统规定参数。 型的寿命周期损耗 机械系统的寿命周期损耗包含着产品成本和维护成本。系统维 护成本是来源于以下所列的项目:( 1)替代部件的成本;( 2)操作损耗包括替换部件时的资源损耗( 比如: 劳动、装备 ) ;( 3)替换部件时的生产间隔造成的间接成本;( 4)替换部件的准备工作成本。在前面的三个项目参与了每次维护时替代部件的数量。替换越多的部件就会耗费越多的资源,占用越多的生产时间,因而带来巨大的损失并增长了维护成本。最后一项没有参与替换部件的数量上但参与了每次维护跟替换上。结果,机械系统的维护成本 被保密为替换部件数量上的成本考虑和维护次数上的成本考虑。在这种方法下,对于一个包含固定数量 N 部件的机械系统 ,在它运行了一段时间 M,它的寿命周期损耗模型包含了生产成本和维护成本,表示为: 在式子 9, C 是系统内每一部分部件总的寿命周期损耗。 别表示部件生产系数,更换成本系数和准备成本系数,这些数据是统计分析领域的数据。m = M /, M 代表着系统寿命。式子 10 等号右边的首项代表系统的生产成本,式子 9 右边的第二项表示系统的维护成本。在式子 9 里,由于部件的替换成本包含着不仅仅是替换失效部件的部件生产成本,而且 有用于资源的成本 和用于替换的间接成本。显然,式子 10 里表示的不是绝对成本,而是相对成本。式 子 9 也可以表示为: 于可靠性的设计与优化 假设系统的一类部件有 X= (x1, 它们的失效密度函数被表示为每一种方案, X= (x1,它们的失效密度函数被表示为F=(f1(t),f2(t),L,fn(t) 作为每一个方案 。 对于一个维护的固定间隔 0,它的基于可靠性优化设计的模型 I 的维护被表示为: 显然的,最小寿命周期损耗和可靠性取自上述模型的一段特定的时间段。对于任何一个的 n 种设计方案,它的成本和可靠性取决于维护间隔 。最小的成品成本可以取 自于最优化的维护间隔。所谓的最佳的维护间隔,顾名思义地, 就是将维护间隔优化到最小的寿命周期成本,因此基于可靠性设计和优化的模型的维护克表示为: 在式子 11 和式子 12 里, C 是取自式子 9 或式子 10, 别表示系统的最小可靠性和稳定的可靠性。 系统允许的可靠性值。通常来讲,( 也就意味着系统稳定性在整个寿命周期内允许在某一定的程度上 变化,但变化范围不会超过稳定可靠性值的 5%25%。 据系统可靠性模仿的设计最优化 显然 ,系统 平稳的可靠性、极小的可靠性和部分在设计模型的替换率可以从可靠性模仿 而获得。 所以,维护的设计最优化是 基于模拟 的设计方法。 在设计模型,可靠性模仿的输入的情况是时间对失败密度系统部分 F,系统服务生活 且生活周期 消耗 系数是 为固定的间隔时间维护,输入的情况在固定的维护间隔时间 0增加。 维护的时间与 M/ 0 明显地是相等的在一生周期期间。 至于维护间隔时间需要被优选的情况,维护的时间是获得的被环绕的 M/在另外维护间隔时间。另外,系统的设计选择必须满足系统可靠性的要求,因而 出来了 。 终于,一个优选设计选择和它极小的信度、平稳的可靠性和生活周期费用 被得出了 。 设计最优化流程图维护的显示作为 式子二 ,设计最优化二个模型维护的是联合。 最可能, 一个模型的解答通常是与另一个模型不同。 5. 设计示范 有链式传送机链接圆环的三个设计选择,产品使用期限 M 等于 100 个月。时间的密度分布函数对圆环的失败的是 作用 ,并且他们的发行参量和费用系数生命周期在表 1 被列出 如 下 。 假设极小的可靠性和平稳的可靠性的要求是 考虑系统维护间隔时间从 一系列的等效区别价值被挑选,离散最优化方法被采取。 两个设计模型的模仿结果维护在 表 到图 11 被列出说明系统可靠性和总生活周期费用随系统的工作次数变化。 注: 0是间隔时间固定周期维护的设计模型 11),和最宜的间隔时间优选周期维护的设计模型 2). 当系统维护间隔固定,最宜的设计选择如显示从模仿结果在表 2 列出了 ,1)是选择 0 = 1 2 x。其中 1x 不满足系统可靠性压抑,并且共计选择 2 x 的寿命消耗 低于选择 3 x。 从 这个 例子, 了解到 不可能有将遇见系统可靠性为不适当的固定的维护间隔时间压抑的设计选择。当系统维护间隔时间被优选时,最宜的设计选择 被 获得了 。 2)是选择 3 x。 在 这个例子中 ,所有设计选择符合系统可靠性的要求,并且共计选择 3 x 的 寿命消耗 是最低的,相应地系统维护间隔时间 * 3 x。 显示易变的维护周期警察导致设计选择另外选择,并且共计生活费用可以是通过优选维护间隔时间减少。 几个有趣的结果能从图 3 到图 6 中 被找到 。 . ( 1) 当固定的间隔时间 (0 = 1)是坚定的,选择的系统可靠性 0 = 要求,而且接近对要求价值。选择 可靠性满足平稳的可靠性的要求,但是不满足极小的可靠性的要求竟管它最便宜。 虽然选择 3 x 满足系统可靠性的要求,平稳的可靠性或极小值可靠性,它有最高的总 寿命周期消耗 。 图 图 4. 设计选择的生活周期费用模仿固定的维护间隔时间 ( 2) 当维护间隔时间被优选时,最宜的间隔时间的选择根据系统可靠性的令人满意要求前提。 至于选择 1 x,为了符合系统可靠性的要求,维护间隔时间减退,但是它的总生活费用增加有些。 为选择 * = 护间隔时间在优化以后保留常数,也,因此意味着间隔时间 =1是这个选择的最宜的间隔时间。 为选择 3 x,由于优化、维护间隔时间增量、 =而它有更低的总生活周期费用。 其外,三个设计选择被优选,系统可靠性和总生活周期费用他们的曲线趋向对集中化和坚固性,并且费用区别在三个选择之中的减少。 图 图 (3) 当系统要求高 的 可靠性 时 ,相应地,维护间隔时间将减 少,并且维修费用将上升。 相反,当系统要求低可靠性,相应地,维护间隔时间将延迟,因此维修费用将减少,系统维护费用减退受系统可靠性要求支配。系统可靠性平稳的价值和最小值随着维护间隔时间的增加单调减少总生活周期费用随着维护间隔时间的增加 而 减少。结果,稳定的极小的间隔时间系统可靠性价值和最小值满足设计要求将得到设计选择的极小的总生活周期费用。必须指出设计选择的系统可靠性比要求价值不是相等与,而是少许更多由于离散最优化的采用。 (4) 当系统的设计选择决定时,设计选择最宜的选择取决于不仅维护系统可靠性和系统服务生活 的间隔时间而且 还有 要求。 例如,当间隔时间被固定时 ( 0 = 1),并且需要的系统可靠性减少从对,从 11)m R = m R = 不是选择 2 x。当系统服务生活转换从 M = 100 到 50时,最宜的设计选择 被 获得了。 2)是替换 3 x 而 选择 1 x 显示作为图 6。 这就 意味着,因为高质量材料做的零件有长的产品使用期限,设计选择得到更低的总 寿命周期成本, 竟管他们 会有 更高的生产成本。 6. 结论 在产品期间的生命周期维护是其中一项重要任务。零件的替换 将导致系统可靠性和生活周期费用的变动。基于零件的时间 失效 密度函数,平稳的可靠性、极小的可靠性和生活周期费用可以通过可靠性模型的系统可靠性的重建和模仿得到。本文开发维护的基于可靠性的设计最优化方法学,总生活周期费用被看待,当作为设计的设计对象和系统可靠性压抑。它提供一种新的方法做在机 械系统之间的可靠性和总生活周期费用的一种交易在设计最优化的维护 。 鸣谢 这 项 工作 得到了 湖南科学技术大学 的刘博士的大力支持 。 笔者相当感激能得到其参考资料的注释,极大地改进了目前这项工作。 参考文献 1 et “of 5, 2 H. J. et “of 2006. 21, 3 Q. “of of 2005, 36, 4 H. H. “in S,1999, 91, 3055 “ 2002, 6 i, “of to of 004, 7 “ 2005, 750. 8 J. R. et “on 2005, 9 D. O. “ 1999, 10 “, 995. 11 U. “a 2002, 12 H. et “of on 2003 ,20, 13 Y. “A to . 008; 93(8): 113850,” 2009, 14 X. “of 2009, ab ab is an of or on of of on of a is in is as as is by of I. of a is to on (1) to to 14. (2) To to to as 9. (3) To is is 012. at is of in of a on is on is on is of In on of of of a of is a is by of of a F A. a to of is to be in of a of in of is of of as of is a of of in B. of a on of on to of to of of is of is of a to be in of of , is be or )t of nt of at 01(), (), , (), , ()nn in of of in at or of of to An at To of is of to is 50875082 9789/$009 029is by to to in in 0t =00() 1 (1) = , of 2) 11 0 0001 000() ()1 ()d() () ()pt fx pt fx =of to of by in = , of 22 11012 010202 11 0100() ()1 ()d() ()1 ()d() () () () ()pt pt fx pt fx xp t p t f p t f =+(3) at , of in by 110(1)1210(2)231022110101001() ( )1 ()d() ( )1 ()d() ( )1 ()d() ( )1 ()d() ( )1 ()d() ( )n n p t fx xp pt fx pt fx pt =)00()=(4) ()np t is of of It np t is of or of In of in 01, , is a is In of in in to of of ()00() 1 () =(5) of is of is )00()00() ()1() =(6) of a is of is of ( at . of of of of at of a to of on of as t(). s it at of be in of 030t = 2t = . is ) ) , 0,1, ,R Rt i n=L(7) R 0, 2+ of R is is as at at or as is =+)/2 (8) 1 is 8%. be 0N is to a of in to of In of is as a of is as is to a A. of of as (1) of (2) of (3) (4) of of is of of or As a of as In a a of it M , is 0101()c=+ + 2(9) q. (9), C is of of in of of of be by of c,c/, of of q.(10) of of q. (9) of q. (9), , of by q.(10) is 9) is +02101()mc c + (10) B. of a of n 2(, , , )nX xx x= L , to ()12(), (), ,L ()or a is 00 ),x (11) is to of n on . be of is to is 0 , ),x (12) q.(11) q.(12), C is q.(9) q.(10). , of 0, is of In 00( = ,to in is %25% of 1031C. on in be is a on In of to of , of of in c, of As to to be of M to at In of an of is in of of is F 012,. of . of of is 00 of to of is of as . x 0c/(1c/(c/( 5 10 3 7 4 12 5 10 4 20 10 18 of is a of is of . 8 11 of I. F x 0/( 1 1 1 x 0/( 1 0 is of q. (11), is of q. (12). *As , is q. (11) is 1 =2x . x of is of it be be a an is q. (12) is x . In of of x is .8 in It is to of be by be 36. (1) a ) is of 1 =2x to of x of 032of in of of or it 1. of a . of a 2) is of is on of of As to x , in to of , 2x , = is an x , to , it of to of 1. of an . of an 3) On so as of is to of of of As a of It be of is to to of (4) of of on of is 01 = ), q.(11) is 00 U s e r M i c r o s o f t 爅 3$ 3 % $ n 8 初始条件: 1、单片干式膜片弹簧离合器 2、发动机最大转矩: 225/4500(Nm/r/3、发动机额定转速: 5500(r/参考车型: 东风小霸王 1060 货车 要求完成的主要任务 : (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、文献检索不少于 5 篇,摘要每篇不少于 200 字; 2、总装配图一张 1 号图纸, 零件图 2 3 张 ,总图纸量不少于 1 张 0 号图纸量;所有图纸需手工绘制。 3、 设计计算说明书 5000 字汉字以上篇幅,按照武汉理工大学课程设计工作规范相关格式撰写。 初始条件: 1、单片干式膜片弹簧离合器 2、发动机最大转矩: 205/4500(Nm/r/3、发动机额定转速: 5500(r/参考车型: 东风小霸王 1060 货车 要求完成的主要任务 : (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、文献检索不少于 5 篇,摘要每篇不少于 200 字; 2、总装配图一张 1 号图纸, 零件图 2 3 张 ,总图纸量不少于 1 张 0 号图纸量;所有图纸需手工绘制。 3、 设计计算说明书 5000 字汉字以上篇幅, 初始条件: 1、单片干式膜片弹簧离合器 2、发动机最大转矩: 225/4500(Nm/r/3、发动机额定转速: 5500(r/参考车型: 东风小霸王 1060货车 要求完成的主要任务 : (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、文献检索不少于 5篇,摘要每篇不少于 200字; 2、总装配图一张 1号图纸, 零件图 2 3张 ,总图纸量不少于 1张 0号图纸量;所有图纸需手工绘制。 3、 设计计算说明书 5000字汉字以上篇幅, 最高车速 90km/h 主减速器传动比 档传动比 质量 m c =4075胎尺寸 r 1 =400合器选定尺寸 外径 D=280径 d=165度 h=外径之比 d/D =位面积 F=40200 摩擦片摩擦因素 f=片离合器摩擦面数 Z=2 离合器间隙 t=4位压力 p 0 =合器从动盘毂花键选择 齿数 10 外径 35径 32厚 4效齿数 40 压盘设计 厚度 15=6375J 传 动片设计 传动片组数 3 每组片数 3 传动片厚度 1钉间距 30置圆周半径 90能是 125完告诉我下) 传动片宽 10效长度 24片弹簧设计计算 H=4 h=2 分离指数 n=18 切槽宽 1=2=10 00 膜片弹簧小端 0 r f=32盘加载点半径 40 支撑环加载点半径 20 点选择 膜 片 弹 簧 1M= 1N=1H=1B= 对 A 点确定 = 点确定 S= 1f=1=1C=离轴承行程 2=1=2=而 2=转减振器设计 极限转矩 转角刚度 5850 N.M/尼摩擦转矩 紧转矩 振弹簧位置半径 60振弹簧个数 减振弹簧总压力 7500N 减振弹簧 单个减振器工作压力 P=1250N 减振弹簧中径 3簧钢丝直径 d=4振弹簧刚度 K=振弹簧有效圈数 i=振弹簧总圈数 n=6 减振弹簧最小高度 簧总变形量 l=振弹簧总变形 振弹簧预变形 l=振弹簧高度 l=动片对从动盘毂最大转角 A= 限位销与从动盘毂缺口侧边间隙 位销直径 d=10mm 1 离合器设计论文 所在学院 专 业 班 级 姓 名 学 号 指导老师 年 月 日 2 目 录 摘 要 4 1 绪论 5 合器概论 5 合器的功用 5 合器的工作原理 6 片弹簧离合器的概论 7 2 离合器结构方案选取 9 合器车型的选定 9 合器设计的基本要求 9 合器结构设计 9 擦片的选择 9 紧弹簧布置形式的选择 9 盘的驱动方式 10 离轴承 的类型 10 合器的散热通风 措施 11 3 离合器基本结构参数的确定 11 擦片主要参数的选择 11 合器后备系数 的确定 12 位压 力 13 擦片基本参数的优化 13 4 离合器从动盘设计 14 动盘结构介绍 14 动盘设计 15 动片的选择和设计 15 动盘毂的设计 16 擦片的材料选取及与从动片的固紧方式 17 5 离合器 压盘设计 17 3 盘的传力方式选择 17 盘的几何尺寸的确定 18 盘传动片的材料选择 18 合器盖的设计 18 6 离合器分离装置设计 19 离杆的设计 19 合器分离套筒和分离轴承的设计 19 7 离合器膜片弹簧设计 20 片弹簧的结构特点 21 片弹簧的变形特性和加载方式 21 片弹簧的弹性变形特性 21 片弹簧的参数尺寸确定 23 23 及 R/ 24 片弹簧起始圆锥底角 24 片弹簧小端半径 分离轴承的作用半径 24 离 指数目 n、切槽宽 1 、窗孔槽宽 2 、及半径 24 片弹簧的 优化设计 24 片弹簧强度计算 25 25 力计算 27 结 论 30 参考文献 31 致 谢 32 4 5 6 7 8 第 1 章 绪 论 题的目的 本次设计,我力争把离合器设计系统化,为离合器设计者提供一定的参考价值。合器发展历史 近年来各国政府都从资金、技术方面大力发展汽车工业,使其发展速度明显比其它工业要快的多,因此汽车工业迅速成为一个国家工业发展水平的标 志。 对于内燃机汽车来说,离合器在机械传动系中作为一个独立的总成而存在,它是汽车传动系中直接与发动机相连接听总成。目前,各种汽车广泛采用的摩擦式离合器主要依靠主、从动部分之间的摩擦来传递动力且能分离的装置。 在早期研发的离合器中,锥形离合器最为成功。现今所用的盘片式离合器的先驱是多片盘式离合器,它是直到 1925 年以后才出现的。 20 世纪 20 年代末,直到进入30 年代时,只有工程车辆、赛车和大功率的轿车上才采用多片离合器。多年的实践经验和技术上的改进使人们逐渐趋向于首选单片干式离合器 1。 近来,人们对离合 器的要求越来越高,传统的推式膜片弹簧离合器结构正逐步地向拉式膜片弹簧离合器结构发展,传统的操纵形式的操纵形式正向自动操纵的形式发展。因此,提高离合器的可靠性和延长其使用寿命,适应发动机的高转速,增加离合器传递转矩的能力和简化操纵,已成为离合器的发展趋势。 随着汽车发动机转速、功率不断提高和汽车电子技术的高速发展,人们对离合器的要求越来越高。从提高离合器工作性能的角度出发,传统的推式膜片弹簧离合器结构正逐步地向拉式膜片弹簧离合器结构发展,传统的操纵形式正向自动操纵的形式发展。因此,提高离合器的可靠性和延长其 使用寿命,适应发动机的高转速,增加离合器传递转矩的能力和简化操纵,已成为离合器的发展趋势。随着计算机的发展,设计工作已从手工转向电脑,包括计算、性能演示、计算机绘图、制成后的故障统计等等。 合器概述 按动力传递顺序来说,离合器应是传动系中的第一个总成。顾名思义,离合器是“离”与“合”矛盾的统一体。离合器的工作,就是受驾驶员操纵,或者分离,或者接合,以完成其本身的任务。离合器是设置在发动机与变速器之间的动力传递机构,其功用是能够在必要时中断动力的传递,保证汽车平稳地起步;保证传动系换档时工作平稳;限制 传动系所能承受的最大扭矩,防止传动系过载。为使离合器起到以上几个作用,目前汽车上广泛采用弹簧压紧的摩擦式离合器,摩擦离合器所能传递的最大9 扭矩取决于摩擦面间的工作压紧力和摩擦片的尺寸以及摩擦面的表面状况等。即主要取决于离合器基本参数和主要尺寸。膜片弹簧离合器在技术上比较先进,经济性合理,同时其性能良好,使用可靠性高寿命长,结构简单、紧凑,操作轻便,在保证可靠地传递发动机最大扭矩的前提下,有以下优点 2: ( 1)结合时平顺、柔和,使汽车起步时不震动、冲击; ( 2)离合器分离彻底; ( 3)从动部分惯量小,以减 轻换档时齿轮副的冲击; ( 4)散热性能好; ( 5)高速回转时只有可靠强度; ( 6)避免汽车传动系共振,具有吸收震动、冲击和减小噪声能力; ( 7)操纵轻便; ( 8)工作性能(最大摩擦力矩 保持稳定) ; ( 9)使用寿命长。 合器的功用 离合器可使发动机与传动系逐渐接合,保证汽车平稳起步。如前所述,现代车用活塞式发动机不能带负荷启动,它必须先在空负荷下启动,然后再逐渐加载。发动机启动后,得以稳定运转的 最低转速约为 300 500r/汽车则只能由静止开始起步,一个运转着的发动机,要带一个静止的传动系,是不能突然刚性接合的。因为如果是突然的刚性连接,就必然造成不是汽车猛烈攒动,就是发动机熄火。所以离合器可使发动机与传动系逐渐地柔和地接合在一起,使发动机加给传动系的扭矩逐渐变大,至足以克服行驶阻力时,汽车便由静止开始缓慢地平稳起步了。 虽然利用变速器的空档,也可以实现发动机与传动系的分离。但变速器在空档位置时,变速器内的主动齿轮和发动机还是连接的,要转动发动机,就必须和变速器内的主动齿轮一起拖转,而变 速器内的齿轮浸在黏度较大的齿轮油中,拖转它的阻力是很大的。尤其在寒冷季节,如没有离合器来分离发动机和传动系,发动机起动是很困难的。所以离合器的第二个功用,就是暂时分开发动机和传动系的联系,以便于发动机起动。 汽车行驶中变速器要经常变换档位,即变速器内的齿轮副要经常脱开啮合和进入啮合。如在脱档时,由于原来啮合的齿面压力的存在,可能使脱档困难,但如用离合器暂时分离传动系,即能便利脱档。同时在挂档时,依靠驾驶员掌握,使待啮合的齿轮副圆周速度达到同步是较为困难的,待啮合齿轮副圆周速度的差异将会造成挂档冲击甚至挂不上 档,此时又需要离合器暂时分开传动系,以便使与离合器主动齿轮联结10 的质量减小,这样即可以减少挂挡冲击以便利换档。 离合器所能传递的最大扭矩是有一定限制的,在汽车紧急制动时,传动系受到很大的惯性负荷,此时由于离合器自动打滑,可避免传动系零件超载损坏,起保护作用。 现代汽车离合器应满足的要求 根据离合器的功用,它应满足下列主要要求: ( 1) 能在任何行驶情况下,可靠地传递发动机的最大扭矩。为此,离合器的摩擦力矩(大于发动机最大扭矩( ( 2) 接合平顺、柔和。即要求离合器所传递的扭矩能缓和地增加,以免汽车起步冲撞或抖动; ( 3) 分离迅速、彻底。换档时若离合器分离不彻底,则飞轮上的力矩继续有一部份传入变速器,会使换档困难,引起齿轮的冲击响声; ( 4) 从动盘的转动惯量小。离合器分离时,和变速器主动齿轮相连接的质量就只有离合器的从动盘。减小从动盘的转动惯量,换档时的冲击即降低; ( 5) 具有吸收振动、噪声和冲击的能力; ( 6) 散热良好,以免摩擦零件因温度过高而烧裂或因摩擦系数下降而打滑; ( 7) 操纵轻便,以减少驾驶员的 疲劳。尤其是对城市行驶的轿车和公共汽车,非常重要; ( 8) 摩擦式离合器,摩擦衬面要耐高温、耐磨损,衬面磨损在一定范围内,要能通过调整,使离合器正常工作。 合器工作原理 如图 示,摩擦离合器一般是有主动部分、从动部分组成、压紧机构和操纵机构四部分组成。 离合器在接合状态时,发动机扭矩自曲轴传出,通过飞轮 2 和压盘借摩擦作用传给从动盘 3,在通过从动轴传给变速器。当驾驶员踩下踏板时,通过拉杆,分离叉、分离套筒和分离轴承 8,将分离杠杆的内端推向右方,由于分离杠杆的中间是以离合器盖 5 上的支柱为支点, 而外端与压盘连接,所以能克服压紧弹簧的力量拉动压盘向左,这样,从动盘 3 两面的压力消失,因而摩擦力消失,发动机的扭矩就不再传入变速器,离合器处于分离状态。当放开踏板,回位弹簧克服各拉杆接头和支承中的摩擦力,使踏板返回原位。此时压紧弹簧就推动压盘向右,仍将从动盘 3 压紧在飞轮上2,这样发动机的扭矩又传入变速器。 11 12345 6789图 离合器总成 片弹簧离合器的优点 与推式相比,膜片弹簧离合器具 有许多优点:取消了中间支承各零件,并不用支承环或只用一个支承环,使其结构更简单、紧凑,零件数目更少,质量更少;拉式膜片弹簧是中部与压盘相压在同样压盘尺寸的条件下可采用直径较大的膜片弹簧,提高了压紧力与传递转矩的能力,且并不增大踏板力,在传递相同的转矩时,可采用尺寸较小的结构;在接合或分离状态下,离合器盖的变形量小,刚度大,分离效率更高;拉式的杠杆比大于推式的杠杆比,且中间支承减少了摩擦损失,传动效率较高,踏板操纵更轻便,拉式的踏板力比推式的一般可减少约 %30%25 ;无论在接 合状态或分离状态,拉式结构的膜片弹簧大端与离合器盖支承始终保持接触,在支承环磨损后不会形成间隙而增大踏板自由行程,不会产生冲击和哭声;使用寿命更长。 12 第 2 章 离合器的结构设计 为了达到计划书所给的数据要求,设计时应根据车型的类别、使用要求、制造条件,以及“系列化、通用化、标准化”的要求等,合理选择离合器结构。 合器结构选择与论证 摩擦片的选择 单片离合器因为结构简单,尺寸紧凑,散热良好,维修调整方便,从动部分转动惯量小,在使用时能保证分离彻底接合平顺,所以 被广泛使用于轿车和中、小型货车,因此该设计选择单片离合器。摩擦片数为 2。 压紧弹簧布置形式的 选择 离合器压紧装置可分为周布弹簧式、中央弹簧式、斜置弹簧式、膜片弹簧式等。其中膜片弹簧的主要特点是用一个膜片弹簧代替螺旋弹簧和分离杠杆。膜片弹簧与其他几类相比又有以下几个优点 9: ( 1) 由于膜片弹簧有理想的非线性特征 ,弹簧压力在摩擦片磨损范围内能保证大致不变,从而使离合器在使用中能保持其传递转矩的能力不变。当离合器分离时,弹簧压力不像圆柱弹簧那样升高,而是降低,从而降低踏板力; ( 2) 膜片弹簧兼起 压紧弹簧和分离杠杆的作用,使结构简单紧凑,轴向尺寸小,零件数目少,质量小; ( 3) 高速旋转时,压紧力降低很少,性能较稳定;而圆柱弹簧压紧力明显下降; ( 4) 由于膜片弹簧大断面环形与压盘接触,故其压力分布均匀,摩擦片磨损均匀,可提高使用寿命; ( 5) 易于实现良好的通风散热,使用寿命长; ( 6) 平衡性好; ( 7) 有利于大批量生产,降低制造成本。 但膜片弹簧的制造工艺较复杂,对材料质量和尺寸精度要求高,其非线性特性在生产中不易控制,开口处容易产生裂纹,端部容易磨损。近年来,由于材料性能的提高,制造工艺和设计方法的 逐步完善,膜片弹簧的制造已日趋成熟。因此,我选用膜片弹簧式离合器 。 压盘的驱动方式 13 在膜片弹簧离合器中,扭矩从离合器盖传递到压盘的方法有三种 9: ( 1) 凸台 窗孔式:它是将压盘的背面凸起部分嵌入在离合器盖上的窗孔内,通过二者的配合,将扭矩从离合器盖传到压盘上,此方式结构简单,应用较多;缺点:压盘上凸台在传动过程中存在滑动摩擦,因而接触部分容易产生分离不彻底。 ( 2) 径向传动驱动式:这种方式使用弹簧刚制的径向片将离合器盖和压盘连接在一起,此传动的方式较上 一种在结构上稍显复杂一些,但它没有相对滑动部分,因而不存在磨损,同时踏板力也需要的小一些,操纵方便;另外,工作时压盘和离合器盖径向相对位置不发生变化,因此离合器盖等旋转物件不会失去平衡而产生异常振动和噪声。 ( 3) 径向传动片驱动方式:它用弹簧钢制的传动片将压盘与离合器盖连接在一起,除传动片的布置方向是沿压盘的弦向布置外,其他的结构特征都与径向传动驱动方式相同。经比较,我选择径向传动驱动方式。 离杠杆、分离轴承 分离杠杆的作用由膜片弹簧承担,其作用是通过分离轴承克服离合器弹簧的推力并推动压盘移 动,从而使压盘与从动盘和从动盘与飞轮相互分离,截断动力的传递,分离杠杆要具有足够的强度和刚度,以承受反复作用在其上面的弯曲应力,分离轴承的作用是通过分离叉的作用使分离轴承沿变速器前端盖导向套作轴向移动,推动旋转中的膜片弹簧中部分离前端,使离合器起到分离作用。分离本次设计选用的是油封轴承,它可以将润滑脂密封在轴承壳内,使用中不需要增加润滑,相比供油式轴承则需增加。 合器的散热通风 试验表明,摩擦片的磨损是随压盘温度的升高而增大的,当压盘工作表面超过200180 C 时摩擦片磨损剧烈增加,正常使用条件的离合器盘,工作表面的瞬时温度一般在 180 C 以下。在特别频繁的使用下,压盘表面的瞬时温度有可能达到C1000 。过高的温度能使压盘受压变形产生裂纹和碎裂。为使摩擦表面温度不致过高,除要求压盘有足够大的质量以保证足够的热容量外,还要求散热通风好。改善离合器散热通风结构的措施有:在压盘上设散热筋,或鼓风筋;在离合器中间压盘内铸通风槽;将离合器盖和压杆制成特殊的叶轮形状,用以鼓风;在离合器外壳内装导流罩 。膜片弹簧式离合器本身构造能良好实现通风散热效果,故不需作另外设置。 动盘总成 从动盘总成由摩擦片,从动片,减震器和从动盘穀等组成。它虽然对离合器工作性能影响很大的构件,但是其工作寿命薄弱,因此在结构和材料上的选择是设计的重14 点。从动盘总成应满足如下设计要求: ( 1) 转动惯量要小,以减小变速器换档时轮齿简单冲击; ( 2) 应具有轴向弹性,使离合器接合平顺,便于起步,而且使摩擦面压力均匀,减小磨损 。 ( 3) 应装扭转减振器,以避免传动系共振,并缓和冲击。 1、摩擦片要求 摩擦系数稳定、工作温度、单位压力的变化对其影响要小,有足够的机械强度和耐磨性;热稳定性好,磨合性好,密度小;有利于结合平顺,长期停放离合器摩擦片不会粘着现象的。综上所述,选择石棉基材料。石棉基摩擦材料是由石棉或石棉织物、粘结剂(树脂或硅胶)和特种添加剂热压制成,其摩擦系数为 度小,价格便宜,多年来在汽车离合器上使用效果良好。同时,摩擦片从动钢片用铆钉连接,连接可靠,更换摩擦片方便,而且适宜在从动钢片上装波形弹簧片以获 得轴向弹性。 2、从动盘的轴向弹性 从动盘的轴向弹性可改善离合器性能,使离合器接合柔和,摩擦面接触均匀,磨损较小。为使从动盘有轴向弹性,单独制造扇形波状弹簧与从动钢片铆接。波状弹簧可用比钢片轻薄的材料制造,轴向弹性较好,转动惯量小,适宜高速旋转,且弹簧对置分布,弹性好。因此设计中选用此类弹簧。 3、扭转减震器 扭转减震器几乎是现代汽车离合器从动盘上必备的部件,主要由弹性元件和阻尼元件组成。弹性元件可降低传动系的首端扭转刚度,从而降低传动系扭转系统的某阶固有频率,改变系统的固有振型,使之尽可能避免由发动机转矩 主谐量激励引起的共振。但是 ,这种共振往往难以避免。汽车行驶在不平的道路上行驶阻力也会时刻变化。当由于路面不平引起的激力频率与传动系的某阶自振频率重合时,也会发生共振现象。阻尼元件则可有效的耗散此时的振动能量,因而扭转减震器可有效地降低传动系共振载荷与噪声。 扭转减震器的弹性特性,又线性和非线性两种。弹性元件采用圆柱螺旋弹簧的减震器,其弹性特点为线性。阻尼元件采用摩擦片通过碟形弹簧建立阻尼默片的正应力,其阻尼力矩比较稳定。因此发动机的扭矩实际上是通过一些弹性元件传递到传动系的。 摩擦式扭转减震器工作原理:离合 器工作时,扭矩从摩擦片传给从动钢片再传给从动盘毂,此时弹簧被压缩,从动钢片相对从动盘毂前移(从动毂边缘上的缺口控制15 着钢片与毂的最大位移)。 合器结构设计的要点 在进行离合器的具体设计时,首先应保证传递发动机最大扭矩为前提,然后满足下列条件 15: ( 1) 如前所述,扇形波状弹簧对置分布铆接在从动钢片上,并在从动盘上设置扭转减震器保证离合器接合柔和,摩擦片制成一定锥度(从动盘锥形量约为 其大端面向飞轮,这样从动盘毂在从动轴(即变速器第一轴)花键上易于滑动,有利于离合器彻底分离。 ( 2) 离 合器主动部分与从动部分的连接和支撑形式,离合器的主动部分包括飞轮,离合器盖与他们一起转动并能轴向移动的压盘,压盘通过钢片与离合器盖相连,离合器从动部分有从动盘,从动轴,从动轴装在飞轮与压盘之间,可在从动轴花键上滑动,设计时把离合器从动轴的前轴承安装在发动机曲轴的中心孔内。 ( 3) 离合器从动轴的轴向定位及轴承润滑,离合器从动轴在安装后应保持轴向定位,在拆卸时便于离合器中抽出来。因此,设计时使从动轴前轴承外圆与飞轮为过渡配合,而前轴承内圈与从动轴为间隙配合,离合器的从动轴轴向定位是靠从动轴后轴承来保证的。离合器 分离轴承靠注入黄油润滑的,而从动轴前轴承靠油杯定期注入润滑。 为防止润滑油流到摩擦衬面,造成离合器打滑,除在轴承处安有自紧油封外,还在飞轮上开泄油孔。 ( 4) 离合器运动零件的限位,离合器处于接合时为使压盘与摩擦片很好接合,应使分离弹簧与分离轴承之间保持一定间隙,这是分离轴承回位弹簧加以保证。分离时,应对踏板的最大行程加以限制。 离合器主要零件的设计 动盘 扇形波状弹簧两两对置铆接与从动钢片上,两侧在铆接摩擦片,铆钉都采用铝制埋头铆钉,摩擦衬面在铆接后腰磨削加工,使其工作表面的不平度误 差小于 动盘本体采用 45 号钢冲压加工得到,为防止其弯曲变形而引起分离不彻底,一般在从动盘本体上设径向切口。 擦片 摩擦片在性能上要满足如下要求: ( 1) 摩擦系数稳定,工作温度,滑磨速度,单位压力的变化对其影响; ( 2) 具有足够的机械强度和耐磨性,热稳定性好; 16 ( 3) 有利于接合平顺; ( 4) 摩擦片选用材料为石棉基摩擦材料,它是由石棉或石棉织物、粘结剂和特种添加剂热压而成,其摩擦系数为 石棉基摩擦材料 密度小,工作温度小于 180 ,价格便宜,使用效果良好,在汽车离合器中广泛使用。 膜片弹簧 膜片弹簧使用优质高精质钢。其碟簧部分的尺寸精度要求高,碟簧材料为60了提高膜片弹簧的承载能力,要对膜片弹簧进行调质处理,得具有高抗疲劳能力的回火索氏体。要防止膜片内缘离开,同时对膜片弹簧进行强压处理(将弹簧压平并保持 1412 小时),使其高压力区产生塑性变形以产生残余反向应力,对膜片弹簧的凹表面进行喷丸处理,喷丸是 白口铁小丸, 可提高弹簧的疲劳寿命。同时,为提高分离指的耐磨性,对其进行局部高频淬火式镀铬。采用乳白镀铬,若膜片弹簧许用应力可取为 1500 1700N/ 压盘 压盘的材料选用 造制成。它要有一定的质量和刚度,以保证足够的热容量和防止温度升高而产生的弯曲变形。压盘应与飞轮保持良好的对中,并进行静平衡。压盘的摩擦工作面需平整光滑,其端面粗糙不低于 盘壳用 12一端固定在压盘端面上。 离合器盖 离合器盖的膜片弹簧支撑处须具有较大的刚度和较高的尺寸精 度,压盘高度(丛承压点到摩擦面的距离)公差要小,支撑环和支撑铆钉的安装尺寸精度要高,耐磨性好,膜片弹簧的支撑形式采用铆钉作支承时,如果分离轴承与曲轴中心线不同心,可引起铆钉的过度磨损。提高铆钉硬度的套筒和支承与曲轴中心线不同心,亦可引起铆钉的过度。提高铆钉硬度的套筒和支承圈是提高耐磨性的结构措施,采用 10 钢材材料、 17 第 3 章 离合器的设计计算及说明 离合器设计所需数据 1、单片干式膜片弹簧离合器 2、发动机最大转矩: 205/4500(Nm/r/3、发动机 额定转速: 5500(r/参考车型: 东风小霸王 1060货车 摩擦片主要参数的选择 采用单片摩擦离合器是利用摩擦来传递发动机扭矩的,为保证可靠度,离合器静摩擦 力矩205 1)后备系数 是离合器的重要参数,反映离合器传递发动机最大扭矩的可靠程度,选择 时,应从以下几个方面考虑: a. 摩擦片在使用中有一定磨损后,离合器还能 确保传递发动机最大扭矩; b. 防止离合器本身滑磨程度过大; c. 要求能够防止传动系过载。通常轿车和轻型货车 =合设计实际情况,故选择 = 则有 可有表 得 表 合器后备系数的取值范围 车型 后备系数 乘用车及最大总质量小于 6t 的商用车 大总质量为 6 14t 的商用车 车 擦片的外径可有式 :( 求得 直径系数,取值见表 取 16 得 D= 表 径系数的取值范围 车型 直径系数乘用车 大总质量为 商用车 片离合器 ) 片离合器 ) 最大总质量大于 商用车 擦片的尺寸已系列化和标准化 ,标准如下表 (部分 ): 表 合器摩擦片尺 寸系列和参数 18 外径 D60 180 200 225 250 280 300 325 内径 d10 125 140 150 155 165 175 190 厚度 /1 C 面面积 06 132 160 221 302 402 466 546 摩擦片的摩擦因数 f 取决于摩擦片所用的材料及基工作温度、单位压力和滑磨速度等因素。可由表 得 : 摩擦面数 Z 为离合器从动盘数的两倍,决定于离合器所需传递转矩的大小及其结构尺寸。本题目设计单片离合器,因此 Z=2。离合器间隙 t 是指离合器处于正常接合状态、分离套筒被回位弹簧拉到后极限位置时,为保证摩擦片正常磨损过程中离合 器仍能完全接合,在分离轴承和 分离杠杆内端之间留有的间隙。该间隙 t 一般为3 4 t=4 表 擦材料的摩擦因 数的取值范围 摩擦材料 摩擦因数f 石棉基材料 模压 织 末冶金材料 铜基 基 属陶瓷材料 合器的静摩擦力矩为: cc ( 与式( 立 得: 33 ( 代入数据得:单位压力 表 擦片单位压力的取值范围 摩擦片材料 单位压力0p/棉基材料 模压 织 9 粉末冶金材料 模压 织 金属陶瓷材料 摩擦片基本参数的优化 ( 1)摩擦片外径 D( 的选取应使最大圆周速度05 70m/s,即 3m a x eD m/s 7065 m/s ( 式中,0m/s) ;r/ ( 2)摩擦片的内、外径比 C 应在 围内,即 C ( 3)为了保证离合器可靠地传递发动机的转矩,并防止传动系过载,不同车型的值应在一定范围内,最大范围为 ( 4)为了保证扭转减振器的安装,摩擦片内径 d 必须大于减振器振器弹簧位置直径020 502 0 Rd ( 5)为反映离合器传递的转矩并保护过载的能力,单位摩擦面积传递的转矩应小于其许用值,即 0220 2 1 T ( 中,0N.m/可按表 取 经检查 ,合格。 表 位摩擦面积传递转矩的许用值 离合器规格 210 250210 325250 325 20 10/ 0 28 0 30 0 35 0 40 ( 6)为降低离合器滑磨时的热负荷,防止摩擦片损伤,对于不同车型,单位压力0 p 0 ( 7)为了减少汽车起步过程中离合器的滑磨,防止摩擦片表面温度过高而发生烧伤 ,离合器每一次接合的单位摩擦面 积滑磨功应小于其许用值 ,即 224 ( 式中 , 为单位摩擦面积滑磨 (J/ 为其许用值 (J/对于乘用车: J/于最大总质量小于 商用车: J/于最大总质量大于 用车: J/W 为汽车起步时离合器接合一次所产生的总滑磨功( J),可根据下式计算 2202221800 ( 式中, r 为轮胎滚动半径( m);g r/算时乘用车取2000 r/商用车取 1500 r/其中: i 6.0rr m 4325g 代入式( 得 J ,代入式( 得 ,合格。 ( 8)离合器接合的温升 式中 ,t 为压盘温升 ,不超过 108 C ; c 为压盘的比热容, c J/(C);为传到压盘的热量所占的比例,对单片离合器压盘; , m 为压盘的质量15.3m 入, 76.4t C ,合格。 片弹簧主要参数的选择 1. 比较 H/h 的选择 此值对膜片弹簧的弹性特性影响极大,分析式 ( 中载荷与变形 1 之间的函数关系可知,当 2, 增函数; 2, 一极值,而该极值点又恰为拐点; 2, 一极大值和极小值;当 2, 小值在横21 坐标上,见图 1- 2/ 2- 2/ 3- 22/2 4- 22/ 5- 22/ 图 膜片弹簧的弹性特性曲线 为保证离合器压紧力变化不大和操纵方便,汽车离合器用膜片弹簧的 H/h 2 范围内选取。常用的膜片弹簧板厚为 2 4设计 2, h=3则 H=6 2. R/r 选择 通 过分析表明, R/r 越小,应力越高,弹簧越硬,弹性曲线受直径误差影响越大。汽车离合器膜片弹簧根据结构布置和压紧力的要求, R/r 常在 范围内取值。本设计中取 25.1摩擦片的平均半径 94r 整 118R 255.1 汽车膜片弹簧在自由状态时 ,圆锥底角一般在 159 范围内,本设计中 a r c t a n 得 在 159 之间,合格。分离指数常取为18,大尺寸膜片弹簧有取 24 的,对于小尺寸膜片弹簧,也有取 12 的,本设计所取分离指数为 18。 1092 取 31 102 满足2 5. 压盘加载点半径 1R 和支承环加载点半径 1r 的确定 22 1r 应略大于且尽量接近 r, 1R 应略小于 R 且尽量接 近 R。本设计取 1161 R 61 r 膜片弹簧应用优质高精度钢板制成 ,其碟簧部分的尺寸精度要高。国内常用的碟簧材料的为 60量应力可取为 1600 1700N/ 6. 公差与精度 离合器盖的膜片弹簧支承处,要具有大的刚度和高的尺寸精度,压力盘高度(从承压点到摩擦面的距离)公差要小,支承环和支承铆钉安装尺寸精度要高,耐磨性要好。 膜片弹簧的优化设计 ( 1)为了满足离合器使用性能的要求,弹簧的 初始锥角 应在一定范围内,即 ( 2)弹簧各部分有关尺寸的比值应符合一定的范围,即 ( 3) 为了使摩擦片上的压紧力分布比较均匀,推式膜片弹簧的压盘加载点半径1R (或拉式膜片弹簧的压盘加载点半径 1r )应位于摩擦片的平均半径与外半径之间,即 推式: 24/)( 1 拉式: ( 1 ( 4) 根据弹簧结构布置要求, 1R 与 R , 621 1 620 1 40 0 rr f ( 5) 膜片弹簧的分离指起分离杠杆的作用,因此杠杆比应在一定范围内选取,23 即 推式: rR rr f 拉式: rR rR f 由( 4)和( 5)得 34320 片弹簧的载荷与变形关系 碟形弹簧的形状如以锥型垫片,见图 具有独特的弹性特征,广泛应用于机械制造业中。膜片弹簧是具有特殊结构的碟形弹簧,在碟簧的小端伸出许多由径向槽隔开的挂状部分 分离指。膜片弹簧的弹性特性与尺寸如其碟簧部分的碟形弹簧完全相同(当加载点相同时)。因此,碟形弹簧有关设计公式对膜片弹簧也适用。通过支承环和压盘加在膜片弹簧上的沿圆周分布的载荷,假象集中在支承点处,用 载点间的相对变形(轴向)为 1,则压紧力 之间的关系式为 : 2111111211211 r/ 式中: E 弹性模量,对于钢, 泊松比,对于钢, = 膜片弹簧在自由状态时,其碟簧部分的内锥高度 h 弹簧钢板厚度 R 弹簧自由状态时碟簧部分的大端半径 r 弹簧自由状态时碟簧部分的小端半径 压盘加载点半径 支承环加载点半径 24 图 片弹簧的尺寸简图 表 片弹簧弹性特性所用到的系数 R r R1 h 118 94 116 96 6 3 代入( 得 1213111 7 2 8 ( 对( 求一次导数,可解出 1=二次导数可得拐点。 凸点: , F N 凹点: , F N 拐点: 51 , 92731 F N 2、当离合器分离时,膜片弹簧加载点发生变化。设分离轴承对膜片弹簧指所加 的载荷为 应此载荷作用点的变形为 2。由 111 112 ( 11112 f ( 列出表 表 片弹簧工作点的数据
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
|
2:不支持迅雷下载,请使用浏览器下载
3:不支持QQ浏览器下载,请用其他浏览器
4:下载后的文档和图纸-无水印
5:文档经过压缩,下载后原文更清晰
|