资源目录
压缩包内文档预览:(预览前20页/共22页)
编号:10340904
类型:共享资源
大小:5.12MB
格式:ZIP
上传时间:2018-08-01
上传人:机****料
认证信息
个人认证
高**(实名认证)
河南
IP属地:河南
50
积分
- 关 键 词:
-
初扎机
设计
全套
cad
图纸
- 资源描述:
-
750初扎机-辊系设计(全套含CAD图纸),初扎机,设计,全套,cad,图纸
- 内容简介:
-
附件一外文资料翻译译文(一)当前课题这篇文章写的是一个几年前就提出来的项目说明的选择,并打算说明一下我们所从事的项目类型。大概的说,我们的研究方向分为涡轮机叶片用的镍基超合金和涡轮机圆盘的应用。这个项目可能会有大量的实验,大量的计算,或者有的地方不仅要做很多实验,同时也要做很多的计算。叶片合金加钌对高温晶相稳定性的影响和镍基超合金的缓慢变化。耐高温元素,例如铼和钨,被加入镍基超合金来提高它的高温抗蠕变力,这些元素同样能促进金属间的完全基于拓扑的晶相组织的生成,最终达到提高机械性能的效果。在实验合金中加入白金族金属元素钌阻止了这些有害金属间相的形成。我所研究的就是找出潜在的办法使钌的加入来提高微观稳定性和它对高温抗蠕变力的直接或间接影响。第二代单晶体镍基超合金的发展涡轮机叶片工作在恶劣的高温环境下。另外,它们承受着热量的循环,就像飞机的起飞和降落。为了满足高效率新型发动机的需要,具有很好的蠕变性能,微观稳定性和出色的抗腐蚀能力的先进的单晶体镍基超合金是很需要的。最初的实验结果表明当把钌和其他的合金添加物结合起来,它在提高稳定性和蠕变能力方面起着很关键的作用。我的这个项目的目的就是研制下一代含钌的单晶体镍基超合金。我的研究致力于有钌和无钌合金的特殊的变形机制,热力学对微观稳定性的贡献和钌的加入与环境影响的关系。CMSX-4 变形机制的一些方面CMSX-4 是一种先进的单晶体镍基超合金,它被劳斯莱斯和其他公司用作涡轮机叶片。它的微观组织由与周围环境伽马相矩阵相联系的最好的立方形伽马相析出物组成。这些析出物是非常让人难忘的坚固的东西,所以它们很难通过变位被穿透。由于涡轮机的零部件工作在高温的环境下,蠕变过程对叶片的寿命起着关键的决定性作用。现在,在对 CMSX-4 各向异性的蠕变反应的了解和开发能用来预测蠕变寿命的模型方面已经有了重要的进步。但是,最新的一些特征,例如凹口和气孔,局部应力很可能导致塑性变形的发生。目前,很少有关于蠕变和塑性在中高温度下相互影响的周期载荷的资料。我的目的就是弄明白在疲劳状态下,有凹口的样本工作情况,以说明一个复杂的叶片在真正的载荷环境中将会如何工作。这将对精确的估算叶片的寿命很有贡献。目前,变形正在被研究当中,变形钢筋也在负荷控制的低周疲劳下做测试。研究的重点是通过扫描电子显微镜和透射电子显微镜对微观结构和位错结构的详细检查。上图:CMSX-4 的光面结构在 750 摄氏度时超过低周疲劳屈服极限后的透过电子线像为燃气轮机部件做的寿命预测和损坏实验模型对承受复杂的热量和在高温下机械负载的燃气轮机部件来说,合理的寿命预测是必要的。为了达到这个目的,不仅需要一个好的构建模型来配合死板的分析报告,而且还需要一个好的损坏实验模型。先前的工作显示,在蠕变的效果与疲劳之间有很强的关系,同时显示在超过 850 摄氏度的温度下氧化的重要作用。蠕变的机制和疲劳破坏(包括氧化)都强烈的依赖于温度,压力和方向;就像来自各个过程中微结构损伤之间的相互影响。因此,弄明白破坏的类型作为条件是很重要的,以便模仿这种复杂的行为和弄清楚通过某一行为可以推断出来的极限。基于最新的奎奈蒂克代码,这个项目为的是做一个半成型的各向异性的模型来表现纤显微结构损害去预测受蠕变、疲劳和经过一系列温度氧化混合作用的部件的寿命,并且通过热机械疲劳测试使模型生效。圆盘合金为轮盘的实际应用开发的一种用先进的技术加工的材料的发展涡轮盘负责保持涡轮机叶片的位置,并且承受着由旋转带来的离心力。在涡轮盘上还存在从盘中心孔到边缘的温度变化。高强度、疲劳和抗蠕变力,在变化的温度里都是一定会有的,它们取决于在部件中的位置。在涡轮盘的孔径上存在着大约 1000 兆帕的强的压力和相对较低的温度。这儿要有很好的晶粒度来达到好的抗拉强度。边缘则承受较小的旋转力,但是却有很高的温度,因此好的蠕变特性是必需的,这就要材料有粗颗粒的显微结构。涡轮机圆盘横截面简要原理图为了修我的博士学位,我选择了广博的热力学和由劳斯莱斯股份有限公司发明的三种新型的粉末加工的镍基超合金的机械方面的学术研究。由于这些合金的经改进的机械性能和低温能力,它们被认为会长期的代替现在制造涡轮机圆盘所使用的合金。在我的博士学位课程中,我已经研究了初级和次级热处理对这些合金的微观结构和纳米机构的影响以及它们综合的机械性能。这提供了对在合金化学,热处理和冷却速度之间的复杂状态的详细了解。在任何新的合金体系研究当中一个关键区域就是关于感知操作时间和温度的热力学稳定性,这是这项工作里被研究最广泛的。镍基超合金倾向于析出一种对机械性能有负面影响的相。这个项目的一部分人已经着手去核定这种合金长期暴露在温度下的影响和确定显微结构发生的变化的数量一些典型的显微结构如下:同样的热处理好的晶粒度,析出物在晶界上提供高温强度放置在 750 摄氏度 5000 小时之后在晶界上的有害的 相(白色的块状粒子)析出物纳米级伽马主要析出物,占该合金构成的将近 55%,是影响高温强度的主要物质。它们对热处理和冷却速度的反应对这些合金的整体强度是极为重要的。纳米级析出物能随着时间和温度改变形态。这儿有一个已经开始分裂成八个小的。它的大小在这种情况下主要取决于冷却速度和这种合金的晶格结构。用场发射扫描电子显微镜(第二幅图)分析使通过正等轴测投影查看二代伽马析出物成为可能。圆盘合金的高温形变从航空发动机涡轮机的叶片和圆盘需要在复杂的温度环境下工作很长一段时间,镍基超合金的高温变形就变得很重要了。对于我的博士学位,我主要研究在高温下镍基超合金的显微组织演变和抗拉特性。目前,镍基合金铬镍铁合金 718 正在被审查,因为它是用的最广的超合金之一。近来,一种专业的机电热机械测试仪被用来做拉伸试验。在机电热机械测试仪的帮助下,在不同的高温和各种压力下大量的拉伸压缩试验将会产生镍基超合金抗拉强度的一系列数据。各种镍基超合金在高温变形前后的显微组织变化将会被用来分析抗拉强度,还包括成分,晶粒大小,晶体形态和增加强度的析出物的分布等大量信息。从机电热机械测试仪测得的抗拉强度数据将会和传统的拉力测试得到的数据进行比较。译文(二)步进电机和伺服电机的系统控制只要有软件的支持,这里将不再有猜测性的工作。运动的控制者软件:只要有了软件,它可以帮助我们配置改装、诊断故障、调试程序等。数控电动机的设计者会是一个微软窗口基于构件的软件开发工具,可以为 6000 系列产品设置代码,同时可以控制设计者与执行者的运动节目,并创造一个定制运营商的测试小组。运动建筑师的心脏是一个空壳,它可以为进入以下模块提供一个综合环境。1.系统配置这个模块提示您填写所有相关初成立信息启动议案。配置向具体 6000 系列产品的选择,然后这些信息将用于产生实际的 6000 语言代码,这是你的开始计划。2.程序编辑器允许你编辑代码。它也有可行的“帮助”命令菜单。A用户指南提供了相关的磁盘指南。3.终端模拟器本模块,可让您直接与 6000 系列产品互动。他所提供的“帮助”是再次参考所有命令和定义。4.测试小组你可以使用本模块,模拟程序,调试程序,并跟踪检测程序。由于它的对话窗口,你能很容易的知道怎么使用它。运动建筑师已经将所有的 6000 系列产品都运用在了步进电机和伺服电机的技术上。由于丰富的对话窗口和 6000 系列语言,使得你能够从简单到复杂的解决问题。运动建筑师的 6000 系列产品的标准配置工具,能够使得这些控制器更加简单,相当大的缩短项目开发时间。它的另外一个增值特点是使用 6000 伺服控制器的调谐助手。基于调谐价值观,这个额外的模块可以以图形化的方式为你展示各种参数。看看这些参数是如何让变化的。用运动的建筑师,你可以一次性打开多个窗口。举例来说,无论是程序编辑器和终端模拟器窗口,你都可以打开运行程序,得到信息,然后改变这一程序。运动建筑师可以利用在线帮助,在整个互动接触内容中为数控电机 6000 系列软件做参考指南.从简单到复杂的解决应用伺服控制是你用伺服调谐器软件控制。数控电机与 6000 系列伺服控制器相结合并应用伺服调谐器软件。伺服调谐器是一个新增功能模块,它扩展和提高运动建筑师的能力。议案建筑师与伺服调谐器结合起来,以提供图形化的反馈方式,反馈实时运动信息并提供简便环境设置微调收益及相关制参数以及提供文件操作,以保存并记得微调会议。请你用运动工具箱软件解决自己的运动控制。运动工具箱实际上是一个为数控电机和 6000 系列运动控制器而设计的广泛应用的虚拟图标式编程仪器。当使用运动工具箱与虚拟编程仪时,编程 6000 系列控制器实质上是完成连接图形图标,或加上形成框图使之可见。运动工具箱中包含了 1500 多条命令,状态栏,实例等。所有的命令、状态栏、实例都包括可视的来源图表,使您可以修改他们,如果有必要,可以满足您的特殊的需要。运动工具箱同时还具有一个可视窗口,基于安装程序和一个全面的用户手册,可以帮助您运行得更好更快。Compucam 是软件电脑辅助运动应用软件 compucam 是基于微软的编程包,它能从 CAD 程序、示波器文档、数控程序和产生 6000 系列数控电机密码相兼容的运动控制器中输入几何图形。购买数控电机是可行的,因为 compucam 是一个附加模块,是运动建筑师的菜单栏,它是作为公用部分而被引用的。程序从 compucam 开始运行 CAD 软件包。一旦程序被起草创作,它就会被保存为DXF 文件,或惠普-吉尔段文档,或 G 代码数控程序。这些几何图形然 后输入compucam 中,产生 6000 系列代码。在程序运行之后,你可使用的运动建筑师功能块,如编辑或下载代等执行程序。运动执行者软件可轻松编程 6000 系列运动执行者革命性控制运动编程。这一具有创新意义的软件允许程序员以他们所熟悉的流程图式的方法编程。运动执行者降低了学习曲线,并使运动控制编程变得相当容易。运动执行者是一套微软软件,基于图形化窗口的发展,让专家和新手程序员容易学习计划 6000 系列产品新的编程语言。简单地拖放代表议案职能的视觉图标,你可以随时的进行你所需要的操作。运动执行者是一个完整的应用开发环境的软件。除了视觉编程 6000 系列产品,用户还可以配置,调试,下载,策划和执行的议案计划。附件二外文资料翻译原文外文资料(一)Current ProjectsThis page contains a selection of project descriptions which have been posted on the site over the years, and is intended to give an idea of the type of projects we work on. Broadly speaking, our research divides into nickel-base superalloys for turbine blade and turbine disc applications. Projects can be largely experimental, largely computational, or somewhere between the two. Blade AlloysEffects of Ru additions on high temperature phase stability and creep behaviours of Ni-base SX superalloysRefractory elements, such as Re and W, are added to Ni-base superalloys to enhance the high temperature creep resistance, these elements also tend to promote the formation of intermetallic Topologically-Close-Packed (TCP) phases that eventually degrade the mechanical properties. Additions of the platinum group metal, ruthenium, to experimental alloys have hindered the precipitation of these deleterious intermetallic phases. My research is to establish the possible underlying mechanisms for Ru additions to improve the microstructural stability and its direct and indirect influences on the high temperature creep resistance. Development of Next Generation Ni-base Single Crystal SuperalloysTurbine blades operate at high temperature within aggressive environments. In addition they undergo thermal cycles as aircrafts take off and land. To meet the needs of higher efficiency of modern engines, advanced Ni-based single crystal superalloys with excellent creep properties, microstructural stability and excellent corrosion resistance are required. Initial results have shown that Ru plays a key role in improving stability and creep strength when combined with other alloying additions. The aim of my project is to develop a next generation Ru-containing Ni-base single crystal superalloy. My research is focused on investigating the characteristic deformation mechanisms of alloys with and without Ru, the thermodynamics of contributing to microstructural stability, and the environmental effects associated with Ru additions. Some aspects of deformation mechanisms of CMSX-4CMSX-4 is an advanced single crystal nickel-base superalloy used by Rolls-Royce and others for turbine blades. The microstructure consists of cuboidal gamma prime phase precipitates that are coherent with the surrounding gamma phase matrix. These precipitates are very effective strengtheners, as they are very difficult for dislocations to penetrate. As turbine components operate at high temperatures, creep processes are critical in determining blade life. There has been significant progress in understanding anisotropic creep response in CMSX-4 and developing models that can be used to predict for creep life. However, near features such as notches and cooling holes, local stresses are likely to be high enough for plasticity to occur. Currently, there is relatively little information on intermediate/ high temperature cyclic loading where creep and plasticity interact. The aim of my project is to understand how notched samples behave under fatigue in order to interpret how a complex blade will behave under real loading conditions. This will contribute to the accurate prediction of blade life. Deformation is being studied in plain and notched bars tested under Load Controlled Low Cycle Fatigue (LCLCF). The emphasis is on detailed examination of the microstructure and dislocation structures by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Transmission Electron Micrograph of main slip plane of CMSX-4 plain bar after above yield LCF at 750C Lifetime Prediction and Damage Modelling for Gas Turbine ComponentsA reasonable lifetime prediction is essential for gas turbine components subjected to complex thermal and mechanical loading at elevated temperature. To achieve this aim, both a good constitutive modelling for inelastic analysis and a good damage modelling are required. Previous work has shown a strong interaction between the effects of creep and fatigue and also an important role for oxidation at temperatures over 850C. The mechanisms of creep and fatigue damage (including oxidation) are strongly dependant on temperature, stress and orientation, as are the interactions between the micro-structural damage from each process. It is thus important to understand the type of damage occurring as a function of condition in order to model this complex behavior and to understand the limits over which behavior can be extrapolated. Based on the current QinetiQ code, this project aims to produce a semi-validated anisotropic model representing microstructural damage to predict the life of components subject to a combination of creep, fatigue and oxidation over a range of temperatures and to validate the model using Thermo-mechanical Fatigue (TMF) testing. Disc AlloysDevelopment of an Advanced Power Processed Materials for Rotor Disc ApplicationTurbine discs are responsible for holding the turbine blades in place and are subjected to a centrifugal force associated with rotation. There also exists a temperature gradient from the bore to the rim of the disc. High strength, fatigue and creep resistance, are all required in varying degrees, dependent on location within the component. In the bore of the disc there exist high stresses, of the order of 1000MPa and relatively low temperatures. Here it is desirable to have a fine grain size, to achieve good tensile strength. The rim experiences lower rotational forces, but much higher temperatures so good creep properties are required, which requires a coarse grained microstructure. Schematic cross-section illustration of a turbine discFor my PhD I am undertaking extensive thermodynamic and mechanical investigations into three new powder processed nickel-base superalloys developed by Rolls-Royce plc. These alloys are seen as long-term successors to currently used turbine disc alloys, due to their improved mechanical properties and temperature capabilities. During the course of my PhD I have studied the effect of primary and secondary heat treatments on both the micro and nano-structures of these alloys and the resulting mechanical properties. This has produced a detailed understanding of the intricacies between alloy chemistry, heat treatment and cooling rate. One key area of investigation in any new alloy system is the thermodynamic stability with regard to perceived operating times and temperatures and this as been extensively studied in this work. Nickel-base superalloys are prone to precipitate certain phases known to have a negative impact on mechanical properties. Part of this project has been to assess the effect of long term exposure to temperature and to quantify the microstructural changes that occur. Some typical microstructures are shown below. As heat treated Fine grain size, precipitates present on grain boundary provide high temperature strength After exposure at 750C for 5000 hours Precipitation of deleterious sigma phase (white blocky particles) on grain boundaries Nano-size gamma prime precipitates which constitute approximately 55% of the volume of the alloys studied are responsible for high temperature strength. Their response to heat treatment and cooling rate is critically important for the overall strength of these alloys. The nano-sized precipitates can change shape with time ad temperature. Here one has begun to split up into eight smaller precipitates. The size at which this happens is strongly dependent upon the cooling rate and lattice mismatch of the alloy. Analysis using FEGSEM (second image) enables secondary gamma prime to be viewed in isometric projection High temperature deformation of disk alloyHigh temperature deformation of Ni-base superalloys is very important since the blades and discs of aeroengine turbine need to work at elevated temperatures for a expected long period. For my PhD I am mainly concerned with investigating the microstructural evolution and the tensile properties of nickel-base superalloys at high temperature. Currently, the nickel-base alloy Inconel 718 has being investigated because it is one of the most widely used superalloys. Recently, an experimental Electrical Thermo-Mechanical Testing (ETMT) apparatus was used for tensile testing. With the help of ETMT apparatus, a large number of tension and compression tests under different high temperatures and various stresses would generate tensile property data for a wide range of Ni-based superalloys. Microstructure investigation of various Ni-based superalloy before and after high temperature deformation would be undertaken to analysis the tensile properties, including quantitative information of composition, size, morphology and distribution of strengthening precipitates. Tensile property data from ETMT testing would be compared with the data from conventional tensile tests. 外文资料(二)Step Motor&Servo MotorSystems and ControlsWith support software, theres no more guess work Motion Architect Software Does the Work for You. Configure ,Diagnose, Debug Compumotors Motion Architect is a Microsoft Windows-based software development tool for 6000Series products that allows you to automatically generate commented setup code, edit and execute motion control programs, and create a custom operator test panel. The heart ofMotion Architect is the shell, which provides an integrated environment to access the following modules. System ConfiguratorThis module prompts you to fill in all pertinent set-up information to initiate motion. Configurable to the specific 6000 Series product that is selected, the information is then used to generate actual 6000-language code that is the beginning of your program. Program EditorThis module allows you to edit code. It also has the commands available through “Help” menus. A users guide is provided on disk. Terminal EmulatorThis module allows you to interact directly with the 6000 product. “Help” is again available with all commands and their definitions available for reference. Test PanelYou can simulate your programs, debug programs, and check for program flow using this module. Because Its Windows, You Already Know How to Use It Motion Architect has been designed for use with all 6000 Series productsfor both servo and stepper technologies. The versatility of Windows and the 6000 Series language allow you to solve applications ranging from the very simple to the complex. Motion Architect comes standard with each of the 6000 Series products and is a tool that makes using these controllers even more simpleshortening the project development time considerably. A value-added feature of Motion Architect, when used with the 6000 Servo Controllers, is its tuning aide. This additional module allows you to graphically display a variety of move parameters and see how these parameters change based on tuning values. Using Motion Architect, you can open multiple windows at once. For example, both the Program Editor and Terminal Emulator windows can be opened to run the program, get information, and then make changes to the program. On-line help is available throughout Motion Architect, including interactive access to the contents of the Compumotor 6000 Series Software Reference Guide. SOLVING APPLICATIONS FROM SIMPLE TO COMPLEX Servo Control is Yours with Servo Tuner Software Compumotor combines the 6000 Series servo controllers with Servo Tuner software. The Servo Tuner is an add-on module that expands and enhances the capabilities of Motion Architect. Motion Architect and the Servo Tuner combine to provide graphical feedback of real-time motion information and provide an easy environment for setting tuning gains and related systemparameters as well as providing file operations to save and recall tuning sessions. Draw Your Own Motion Control Solutions with Motion Toolbox Software Motion Toolbox is an extensive library of LabVIEW virtual instruments (VIs) for icon-based programming of Compumotors 6000 Series motion controllers. When using Motion Toolbox with LabVIEW, programming of the 6000 Series controller is accomplished by linking graphic icons, or VIs, together to form a block diagram. Motion Toolboxs has
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。