




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时课题: 第四章 第二节 平行四边形的判别(2)课 型: 新授课教学目标:1经历并了解平行四边形的判别方法探索过程,使学生逐步掌握说理的基本方法.2探索并了解平行四边形的判别方法:两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形.能根据判别方法进行有关的应用.3在探索过程中发展学生的合理推理意识、主动探究的习惯. 教法及学法指导:本节应用“自主探究-小组合作”教学模式,引导学生对设计的问题进行仔细观察、主动思考、小组讨论、主动探究,最后自己得出结论,学会解决问题的方法.这节课是在上节课的基础上继续研究平行四边形的判定方法,学生利用全等三角形的知识可以轻松的推出有关的结论,关键是用性质定理和判定定理去解决实际问题.教学准备:教具:多媒体课件 三角板学具:学生准备的牙签 课本 练习本教学过程:一、创设情境,导入新课师:上节课我们学习了平行四边形,怎样的四边形称为平行四边形呢?生:两组对边分别平行的四边形叫做平行四边形师:这句话可以作为定义,还可以作为什么呢?生:它不仅是定义,还可以作为判定师:平行四边形还有哪些其它性质?平行四边形的性质边 平行四边形的对边平行平行四边形的对边相等角 平行四边形的对角相等平行四边形的邻角互补对角线 平行四边形的对角线互相平分师:今天我们继续探究,是否还有其它的判别平行四边形的判定方法呢?设计意图:教师提出问题,由学生独立思考,并口答得出定义正反两方面的作用,总结出判定四边形是平行四边形的几个条件对比平行四边形的性质,猜测平行四边形的判定还可能有其他的方法.二、探究新知:DACB探究活动(一)师:每位同学桌上已经准备了两根牙签和两根棉签你能在平面内将它们首尾顺次相接, 组成一个平行四边形吗?请同学们动手试试看请哪个到台前来操作师:请你告诉大家,你是如何拼接的?生:把两根牙签和两根棉签分别作为四边形的对边师:也就是说,你认为如果一个四边形有两组对边分别相等,那么这个四边形是平行四边 形?师:我们得到了这样一句话:两组对边分别相等的四边形是平行四边形 这句话成立吗?生:是的师:怎么才能说明它的道理呢?生:度量法.生:还有可以证明师:证明之前,我们要做些什么准备工作?生:根据题意画出图形,写出已知和求证师:已知和求证如何来写?生:“已知:四边形 ABCD 中,AB CD ,ADBC 求证:四边形 ABCD 是平行四边形”师:现在,我们有没有方法来证明这是一个平行四边形呢?生:可以根据定义来证明师:很好,请你说说你的证明思路生:连接 AC,证明 ABC D师:好,下面请大家再写出证明过程生:练习本上快速的完成(小组内交流讨论)师:这样我们就得到了第二个判定平行四边形的方法,作为判定定理 1:两组对边分别相等的四边形是平行四边形几何语言描述为:ABCD,ADBC四边形 ABCD 是平行四边形填表:性质 判定平行四边形的对边平行 两组对边分别平行的四边形是平行四边形平行四边形的对边相等 两组对边分别相等的四边形是平行四边形平行四边形的对角相等平行四边形的对角线互相平分师:它们之间有什么样的关系?生:它们是互逆的设计意图:通过学生动手拼摆图形来提高学生参与的积极性,同时让学生分析证明的过程,让学生知道几何说理的必要性,锻炼了学生的逻辑思维能力和分析问题、解决问题的能力.探究活动(二)师:你还能猜想出其他的判别方法吗?DACBDAOCB生:两组对角分别相等的四边形是平行四边形生:对角线互相平分的四边形是平行四边形师:非常好!要说明它们能否作为平行四边形的判定方法,我们就要一一验证我们先看“两组对角分别相等的四边形是平行四边形”已知:如图,四边形 ABCD 中, ,CB求证:四边形 ABCD 是平行四边形师:能否在练习本上完成证明的过程 (二组 1 号同学代表板演过程)巡视学生的解题情况,提醒学生解题格式.这样,我们就得到了第三种判定方法,作为判定定理 2:两组对角分别相等的四边形是平行四边形几何语言描述为: ,ACBD四边形 ABCD 是平行四边形师:到目前为止,我们已经学了几种判定平行四边形的方法?生:三种填表:性质 判定平行四边形的对边平行 两组对边分别平行的四边形是平行四边形平行四边形的对边相等 两组对边分别相等的四边形是平行四边形平行四边形的对角相等 两组对角分别相等的四边形是平行四边形平行四边形的对角线互相平分设计意图:通过对题目的分析和证明,又一次复习了平行线的判定定理(同旁内角互补,两直线平行),让学生明白证明是将题目给的条件如何推导出平行四边形的定义上来.探究活动(三)我们再看看“对角线互相平分的四边形是平行四边形”已知,如图,四边形 ABCD 中,AC 与 BD 相交于点 O,AO CO,BODO 求证:四边形 ABCD 是平行四边形师:小组内进行讨论完成,(一组 2 号同学生代表板演)师:这样,我们就得到了第四种判定方法,作为判定定理 3:对角线互相平分的四边形是平行四边形几何语言描述为:AB CDEFAOCO,BODO四边形 ABCD 是平行四边形填表:性质 判定平行四边形的对边平行 两组对边分别平行的四边形是平行四边形平行四边形的对边相等 两组对边分别相等的四边形是平行四边形平行四边形的对角相等 两组对角分别相等的四边形是平行四边形平行四边形的对角线互相平分 对角线互相平分的四边形是平行四边形师:现在,我们已经学会了 4 种方法来判定一个四边形是平行四边形从边:“两组对边分别平行”,“ 两组对边分别相等”;从角:“两组对角分别相等”;从对角线:“对角线互相平分”设计意图:对比性质学习判定,让学生明白性质与判定是互逆的,提醒学生应用时注意题目给出的条件,利用表格能够让学生清晰的看到性质与判定的互逆关系,应用它们解题时可以有选择的说明判定的理由.三、比一比、看谁最快:检验一下我们掌握的情况,我们来练一练师:1.判断下列四边形是否为平行四边形?并说出你的依据生 1:我认为是平行四边形,我的判断依据是“对角线互相平分的四边形是平行四边形”.师:回答的非常好,请下一组的同学来回答第二图.生 2:我认为也是平行四边形,我的判断依据是“两组对边分别相等的四边形是平行四边形”师:他回答的好不好?(学生齐声说:“好”) 那么第三图呢?生 3:我认为它不是,因为不知道D 的度数(下面的学生有小声的议论)师:有什么不同意见可以提吗?(许多学生举手)请五组的 3 号同学来回答.生:我认为它是平行四边形,因为由条件可以算出D 的度数是 60,根据两组对角分别相等的四边形是平行四边形师:还有意见吗?(学生表示没有)2.如图,AB=CD=EF,AC=BD,CE=DF,图中有哪些互相平行的线段?(学生激烈的讨论,举手抢答)生 1:我是四组的 4 号,我们组讨论的结果是:AC BD 、ABCD 理由是根据 AB=CDDCAB4cm5 DCABO.2c4.2cm6.8. DCAB1206AC=BD 可以得到四边形 ABCD 是平行四边形,进而得出结论.师:还有其他的平行四边形吗?生 2:有,四边形 CDFE 是平行四边形,得出 CEDF CDEF师:除了以上两同学的回答外,你还有什么发现吗?仔细考虑一下生有疑问的声音:还有吗?再看看“我发现了”孔维正同学抢着说:ABEF 因为 ABCD 、 CDEF 所以 ABEF老师我说的对吗?其他同学给出肯定的说法,原来是这样的.师:你的回答非常好!继续努力!四、学以致用 如图,在平行四边形 ABCD 中,已知 AE、CF 分别是 DAB、 C的角平分线,试说明四边形 AFCE 是平行四边形你能利用哪些知识来解决这个问题?师:温馨小提示:方法不唯一:(组织学生小组讨论、探究、交流)教师巡视学生讨论生 1:我们小组认为可以利用定义来判断,具体的思路是这样的:先证BEA = BCF,然后得出 AECF ,结合已知 ADBC 得出结论生 2:我们小组结论是先证ABECDFAE=CF,BE=DFAF=CE 平行四边形 ABCDAD=BC 四边形 AFCE是平行四边形 生 3: 我们小组认为可以用“两组对角分别相等的四边形是平行四边形”完成每一小组选派一名代表板书解题过程,其余同学在练习本上完成设计意图:通过习题让学生进一步熟悉掌握平行四边形的几种判定方法,提高学生的分析问题、解决问题的能力,针对学生对几何题目的证明过程还不够规范,让学生养成书写几何证明的习惯,让三名同学板演解题过程.五、巩固提高师:出示如图,平行四边形 ABCD 的对角线 AC、BD 相交于点 O,E、F 是 AO 、 CO 的中点试说明:四边形 BFDE 是平行四边形生:积极思考,尝试完成,并相互交流证明:四边形 ABCD 是平行四边形AOCO,BODOE、F 是 AO 、 CO 的中点EO 21AO FO CFEOFOABCDFFDE又 BODO 四边形 BFDE 是平行四边形变式(1):由例题中的特殊点 E、F 推广到较一般的,若 AE=CF,结论有改变吗?为什么?师:类似于上一题,你能得到哪些线段相等?生:AOCO,BODO师:如果 AE=CF 那么你又有哪些线段可以相等呢?生:可以利用 AOAE=OE COCF=OF得到 OE=OF变式(2):若 E、F 移至 OA、OC 的延长线上,且 AE=CF,结论有改变吗?为什么?生:同上题的思路 OE=OA+AE, OF=OC+CF得出 OE=OF 生:又由已知得 OB=OD 可以得证变式(3):若 E、F、G、H 分别为 AO、CO、BO、DO 的中点,四边形 EGFH 为平行四边形吗?为什么?生:易得 AO= CO, BO=DO又E、F 、G 、H 分别为 AO、CO、BO 、DO 的中点 OE= 21OA、OF= OC OG= 21OB OH= OD OE=OF 、OG= OH四边形 EGFH 为平行四边形.设计意图:通过习题让学生巩固对角线互相平分的四边形是平行四边形的判定定理,提高学生的认知水平,灵活利用判定方法解决问题,提高学生解决问题的能力,比较每一题的思路和方法,理解“万变不离其宗”的道理.六、课堂小结:师:请你谈谈你这节课的体会与收获?与大家一起分享生 1:我们学到了平行四边形的四种判定方法生 2:我们知道了性质与判定的互逆关系,通过平行四边形的性质,可以探索平行四边形的判定方法生 3: 设计意图:培养学生的语言表达能力,增强学生的自信心,激励学生展示自我,认识自我,建立自信,增强小组合作的意识.七、课后作业:1.课本 107 页习题 4、4 知识技能 1、2,数学理解 12.助学中相关的题目ABCDOGEFH3变 式 图ABCDOFE2变 式 图ABCDOFE1变 式 图3.预习下一节课 菱形板书设计4、2 平行四边形的判别(2)平行四边形的性质1、2、3、4学生板演题目平行四边形的判定1、2、3、4、学生板演题目练习例题 1学生板演题目教后反思:平行四边形是在日常生活和实际工作中具有广泛的应用,因此它的性质和判定是本章的重点内容性质和判定的学习是一个互逆的过程,性质是学习判定的基础课堂对于课本上的拼图,学生能够按在小组内交流完成,具
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 蒸汽杀菌锅知识培训要点
- 2025年社区卫生服务知识考试题库(附答案)
- 2025年普通处方权考试题及答案
- 2025诊所租赁合同范本参考
- 叉车实操考试全套试题及答案
- 2025年高考化学试题分类汇编:有机化学基础(含解析)
- 2025全面授权合同协议书汇编
- 物业安全生产试题及答案
- 2025年4月护理理论知识考试模拟题(含参考答案)
- 2025年北京市旅游合同范本(BF)
- 读书分享-《教育的情调》
- 《材料力学》说课-课件
- 物资采购付款报销单
- 政务云收费标准 云托管收费标准
- 飞灰螯合物运输服务方案
- 计算机辅助翻译实用教程ppt课件(完整版)
- 研学旅行概论教学课件汇总完整版电子教案
- 《UI视觉设计案例教程》PPT课件(共6章)第1章 UI快速入门
- 《中国的行政区划》教学设计
- 50T吊车性能表
- 钢化玻璃标准
评论
0/150
提交评论