




已阅读5页,还剩48页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1. large sample problem 大样本问题2. least-square estimation 最小二乘估计 3. level of significance 显著性水平 signifikns4. likelihood function 似然函数 laiklihud5. likelihood ratio 似然比 reiu6. likelihood ratio test 似然比检验7. linear relation 线性关系 lini8. linear trend 线性预测值9. loading 载荷 ludi10. logarithms 对数 l:grim11. lower limit 下限New words12. Mahal Distance 马氏距离13. matrix 矩阵 meitriks14. maximum 最大值 mksimn15. mean 均值16. mean difference 均值差值17. mean square 均方18. mean sum of square 均方和19. measure 度量 me20. median 中位数21. midpoint 中值 mid,pint22. negative correlation 负相关 negtiv23. nominal variable 名义变量 nominal24. nonlinear correlation 非线性相关 nnlini25. nonlinear regression 非线性回归26.nonparametric statistics 非参数统计 nnprmetrik27. nonparametric test 非参数检验28. normal distribution 正态分布 n:mlWe have seen in the previous chapters how very simple graphical devices can help in understanding the structure and dependency of data. The graphical tools were based on either univariate (bivariate) data representations or on “slick” transformations of multivariate information perceivable by the human eye. Most of the tools are extremely useful in a modelling step, but unfortunately, do not give the full picture of the data set. 3 Moving to Higher DimensionsUnivariate,ju:nivrit Adj.单变量的One reason for this is that the graphical tools presented capture only certain dimensions of the data and do not necessarily concentrate on those dimensions or subparts of the data under analysis that carry the maximum structural information. In Part III of this book, powerful tools for reducing the dimension of a data set will be presented. In this chapter, as a starting point, simple and basic tools are used to describe dependency. They are constructed from elementary facts of probability theory and introductory statistics (for example, the covariance and correlation between two variables).3 Moving to Higher Dimensions The covariance is a measure of dependence. Covariance measures only linear dependence. Covariance is scale dependent. There are nonlinear dependencies that have zero covariance. Zero covariance does not imply independence. Independence implies zero covariance. Negative covariance corresponds to downward-sloping scatterplots. Positive covariance corresponds to upward-sloping scatterplots. The covariance of a variable with itself is its variance Cov(X,X) = XX =2X For small n, we should replace the factor 1/n in the computation of thecovariance by 1/n1 . The correlation is a standardized measure of dependence The absolute value of the correlation is always less than one. Correlation measures only linear dependence. There are nonlinear dependencies that have zero correlation. Zero correlation does not imply independence. Independence implies zero correlation. Negative correlation corresponds to downward-sloping scatterplots. Positive correlation corresponds to upward-sloping scatterplots. Fishers Z-transform helps us in testing hypotheses on correlation. For small samples, Fishers Z-transform can be improved by the transformation The center of gravity of a data matrix is given by its mean vector x =n1 XT1n. The dispersion of the observations in a data matrix is given by the empirical covariance matrix S = n1XTHX. The empirical correlation matrix is given by R = D1/2 SD1/2. A linear transformation Y = XAT of a data matrix X
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论