




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.5.1 曲边梯形的面积教案课题:曲边梯形的面积教材:人教 A 版数学 选修 2-2 第一章第五节第一课时一、 【教学目标】1、知识目标: 初步了解、感受定积分的实际背景。 体会“以直代曲” , “逼近” 的思想。2、能力目标: 通过探索求曲边梯形的面积的过程,了解用“分割、近似代替、求和、取极限”的方法、步骤分析问题,从而培养学生的逻辑思维能力,了解用极限的思想方法思考与处理问题,从而培养学生的创新意识。 体会“以直代曲”, “逼近”的思想。以直代曲的过程中体会直与曲虽然是一对矛盾,但它们可以相互转化,体现对立统一的辩证关系。体验从特殊到一般、从具体到抽象的探究过程。3、情感、态度与价值观目标: 认同“有限与无限的对立统一”的辩证观点; 感受数学的简单、简洁之美。 通过历史题材培养学生的爱国情操。二、 【教学的重点、难点】重点: 了解定积分的基本思想方法以直代曲、逼近的思想,通过化整为零,积零为整求曲边梯形的面积这一过程,初步掌握求曲边梯形面积的步骤的“四步曲 ”,即 “分割、近似代替、求和、取极限” ,领会其微积分思想方法。难点:“以直代曲” 、 “逼近”思想的形成过程。 (由于这种“以直代曲” 、 “逼近”思想学生比较陌生 )三、 【教学方法和手段】(1)在教学过程中我选用启发式、讨论探究式的教学方法,运用多媒体的直观的功能,让学生在观察过程中通过类比、分析、归纳等方法解决问题;在师生互动中启发学生,促进学生积极思维、主动学习,激发学生的学习兴趣 .(2)运用多媒体课件辅助课堂教学,通过创设情境,为学生提供丰富、生动、直观的观察材料,激发学生学习的积极性和主动性。 四、 【教学过程】设计环节 教学内容 师生互动 设计意图问题一:我们在小学、初中主要学习求规则的平面图形面积的问题。但现实生活中更多的是不规则的平面图形。对于不规则的图形我们该如何求面积?比如这个湖面的面积? 问题二:该户型图有些边是曲线,有些边是直线,又如何测量该房屋的面积?引导学生认识到平面图形分成“直边图形”和“曲边图形” 。带着问题走进课堂,诱发学生的好奇心,激发学生的学习兴趣和求知欲望。体现了数学来源于生活,数学又应用于生活。问题三:以下三个图形有什么不同?xyo引导、引出曲边梯形的定义 让学生体验将实际生活问题抽象为数学问题。创设情景引入新课xyo a by=f(x)定义:由直线 x=a,x=b,(ab)x 轴与曲线 y=f(x)所围成的图形称为曲边梯形。 (如图) 揭示“直边图形”和“曲边图形”的本质联系,得出曲边梯形的定义。了解曲边梯形的结构特征。初步探究探究 1:对于由 y=x2 与 x 轴及 x=1所围成的平面图形面积该怎样求?由刘徽 的“ 割圆术”中以“直 ”代“曲” 思想的启示,用正多边形逼近圆求圆面积, “以直代曲,逼近”的思想启发学生得到解决问题的思路:将求曲边梯形面积的问题转化为求“直边图形”面积的问题。体现化归的数学方法。先考虑特殊的曲边梯形面积,符合学生的认知规律。由简单到复杂也有助于学生思维的构建和方法的形成。直线 几条线段连成的折线 曲线探究 2:能否直接对整条曲边进行“以直代曲”呢?为什么?学生讨论,交流得出结论:可能导致误差过大。类比求圆面积方法,启发学生思维活动。让学生意识到该作法存在缺陷。探究 3:怎样减小误差?怎样分割?分成怎样的形状?(分割)xy10学生提出自己的看法,同伴之间进行交流、合作。探究解决途径:在局部小范围内“以直代曲” 。循序渐进,因势利导,引导学生寻求减小误差的方法途径。探究 4: (1)对每个小曲边梯形如何以直代曲?(2)采用哪种方案好呢?又应该如何求每个小曲边梯形面积的近似值呢? (近似代替)xy0 1利用多媒体课件演示。学生可能提出多种“以直代曲”的方案。教学中,组织学生讨论、分析各种方案的利弊及可操作性。 (常见三种方案)初步探究合作学习提取两种可行方案,引导学生尝试计算小曲边梯形的面积的近似值。引导学生选用恰当的方法作近似代替:小曲边梯形面积(曲边图形)化归为小矩形面积(直边图形) 。渗透数学的简单、简洁之美。i-1n)(yf第i 个小曲边梯形方案2i-1n)(fi-()f第i个小曲边梯形探究 5:那么如何求曲边梯形的近似值呢?(求和)yxS曲 边 梯 形 黄 色 部 分 xy根据上面所得小曲边梯形的面积的近似值。分配学生任务,分组合作,尝试计算两种近似代替的结果。 (求和)引导学生求和,因为学生已熟悉公式,有能力独立完成。放手让学生去做。探究 6:如何从曲边梯形面积的近似值求出曲边梯形的面积? (取极限)不足近似:过剩近似:学生观察几何画板演示,注意观察近似值的变化趋势:(1)在不足近似中,随着 n 的增大,近似值逐渐增大,并趋近实际面积。(2)在过剩近似中,随着 n 的增大,近似值逐渐减小,并也趋近实际面积。采用几何直观和列表计算相结合的方法,引导学生观察近似值的变化趋势,教学中,引导学生想象近似值随分割的不断细化而趋向于曲边梯形面积的过程,利用信息技术向学生展示逼近过程,以增强学生的直观感知 体现数形结合的数学方法。通过两种近似代替的探究,形成左右夹逼,最后得到曲边梯形的面积。循序渐进探究 7:前面分别以区间1,in的左端点的函数值()f和以右端点的函数值i为矩形的高来计算近似面积。若取任意 1,iin的函数值()if为高,会有怎样的结果?学生发表自己的看法,类比书中的方法,进行思考,讨论,归纳、总结。 1()3niifS=lm认识到近似代替的方式不惟一性,循序渐进,有助于发散学生思维空间。为定积分概念作初步铺垫。形探究 8:回到课本 P38 思考题,如何计算一般的曲边梯形?由学生观察、交流,类比: 1n为通过类比,得到一般曲边梯形的面积表达,解决本课开始提出的问题,起到前后呼应的作成方法,等分后的小区间长度。从而得出: 1()niibafS=lm用。体现由特殊上升到一般,由具体到抽象的认识提升。同时进一步为定积分概念作铺垫。应用新知实战演练练习:求直线 x=0,x=2,y=0 与曲线y=x2 所围成的曲边梯形的面积。 教师巡视、实物展示、加以点评培养学生自觉运用新知,方法的能力。小结反思深化认识小结:(1)求曲边梯形面积的思想方法是什么?(2)具体的步骤是什么?以学生叙述为主。不足之处,教师加以补充。归纳总结本课所学的知识和思想方法。起到在认识上进一步深化,升华。作业:求直线 x=1,x=2,y=0 与曲线y=x3 所围成的曲边梯形的面积。学生独立完成。1、 巩固所学知识,加深教材的理解。2、 及时反馈教学效果,进一步完善教学。3、 培养学生良好的学习习惯。课后评价陶冶情操兴趣活动:(二选一)1、实习作业:查阅资料,收集牛顿和莱布尼茨的生平资料,以及在创立微积分时所做的开创性的工作?2、拓展探究:已知球的半径为 R,尝试用这节课所学的数学思想方法推导球的体积公式。根据学生爱好,让学生分工合作,共享成果1、激发学生学习数学的兴趣和热情。2、体会微积分的建立在人类文明发展中的意义和价值。3、激发学生探索创新的欲望,逐步形成乐于探索、努力求知的积极态度。曲边梯形的面积教案说明本课是以学生为主体,以问题为主线,以老师为主导,通过环环相扣的问题链,层层深入,不断启发学生的思维活动,使探究活动贯穿整节课始终。因此,教学设计体现了以学生发展为本的教育理念,注重对学生的引导启发,培养学生的自主探究能力。通过创设问题情境,利用多媒体辅助教学,引导学生主动探究思考获取新知识,并在此过程中培养学生的逻辑思维能力、探索创新能力、知识迁移能力和数学应用能力,使学生形成对数学、对他人的良好的积极情感。板书设计练习:曲边梯形的面积 分割 n个小曲边梯形的面积和n个小矩形的面积和求和面 积 近 似 值近似代替取极限 (无限逼近)(以直代曲)1.5.1 曲边梯形的面积 用于生活。初步探究中设计了七个探究,从整条曲边到局部小范围内的“以直代曲” ,再到近似代替方案讨论,都是在一个个问题的驱动和我的引导下,由学生探究来完成的。另外,我还重点布设了 3 次思维发散点,分别是在探究 3、探究 4 以及探究 5 中,要求学生分组讨论,合作交流,为学生创设了充分的探究空间,学生在交流成果的过程中体验学习的乐趣,同时又在我的适度引导与不断肯定下顺利完成了探究活动,并形成方法,通过类比,得到一般曲边梯形的面积表达,解决本课开始提出的问题,起到前后呼应的作用。体现由特殊上升到一般,由具体到抽象的认识提升,同时进一步为定积分概念作铺垫。实战演练的设计,目的在于培养学生自觉运用新知,方法的能力。归纳小结由学生来完成,教师适当补充。让学生对知识进行归纳总结,使之条理化,既深化了学生对知识的理解,也培养了学生的语言表达能力。巩固作业的设计与教学内容相匹配,突出教学难点的理解应用,教学过程从创设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业互联网平台雾计算协同在智能仓储物流中的应用案例分析报告
- 2025年农村一二三产业融合发展的农村物流技术应用效果评估报告001
- 2025年元宇宙社交平台虚拟现实技术专利布局与市场竞争力报告
- 2025年医院信息化建设关键环节:电子病历系统深度优化分析报告
- 2025年工业互联网平台生物识别技术在智能工厂生产流程优化中的应用价值分析报告
- 2025年黑龙江省伊春市名校八年级英语第二学期期末教学质量检测模拟试题含答案
- 2025年医药企业研发外包(CRO)模式下的知识产权保护与法律风险防范报告
- 四川省成都市天府新区2025届英语八年级第二学期期末教学质量检测试题含答案
- 表白数独题目及答案
- 地热资源区域供暖系统设备选型与国产化进程报告001
- FZ/T 73001-2016袜子
- 2022版音乐课程标准解读
- 轮机英语词汇汇总
- 充电桩检测报告模板
- 车载诊断系统(OBD)简介课件
- 无犯罪证明委托书模板
- 城市轨道交通列车运行图编制课件
- 吊车施工专项施工方案
- (新版)国际法配套练习题库500题(含各题型)
- IOF骨质疏松风险一分钟测试题
- 假肢使用课件
评论
0/150
提交评论