




已阅读5页,还剩83页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
计量资料的统计推断 总体均数的估计 与假设检验 1 uu均数的抽样误差与标准误均数的抽样误差与标准误 uu t t 分布分布 uu总体均数的估计总体均数的估计 uu t t 检验检验 uu假设检验的注意事项假设检验的注意事项 讲课内容讲课内容 2 第一节第一节 均数的抽样误差与标准误均数的抽样误差与标准误 3 u了解总体特征的最好方法是对总体的每一 个体进行观察、试验,但这在医学研究实 际中往往不可行。 u对无限总体不可能对所有个体逐一观察, 对有限总体限于人力、财力、物力、时间 或个体过多等原因,不可能也没必要对所 有个体逐一研究(如对一批罐头质量检查)。 u借助抽样研究。 4 u欲了解某地18岁男生身高值的平均水平, 随机抽取该地10名男生身高值作为样本。 u由于个体变异与抽样的影响,抽得的样本 均数不太可能等于总体均数,造成样本统 计量与总体参数间的差异(表现为来自同一 总体的若干样本统计量间的差异),称为抽 样误差。 u抽样误差是不可避免的。 u抽样误差是有规律的。 5 1999年某市18 岁男生身高值 XiN(, 2) =167.7cm =5.3cm 样本号 1 167.41 2.74 2 165.56 6.57 3 168.20 5.36 99 169.40 5.57 100 165.69 5.09 ni = 10 6 样本均数抽样分布具有如下特点: u各样本均数未必等于总体均数 u各样本均数间存在差异 u样本均数围绕 =167.69cm呈正态分布 u样本均数变异度( )较原总体个 体值变异度( = 5.3cm)大大缩小 7 8 中心极限定理(central limit theorem) 从均数为、标准差为的总体中独立随机 抽样,当样本含量n较大时, 样本均数的分布将趋于正态分布 此分布的均数为 标准差为 9 中心极限定理(central limit theorem) 若 X i 服从正态分布 则 服从正态分布 若 X i 不服从正态分布 n大(n60):则 近似服从正态分布 n小(n60) 按u分布原理 25 双侧 1、未知 26 故该地18岁男生身高均数的 95%可信区间为(164.35, 169.55)cm。 =167.7cm 双尾 例 在例3-1中抽得第15号样本的 =166.95(cm),S=3.64(cm), 求其总体均数的95%可信区间。 166.952.2621.1511=164.35169.55(cm) 27 双侧 2、已知或未知但n足够大: 28 例 某地抽取正常成年人200名,测得其血 清胆固醇均数为3.64 mmol/L,标准差为 1.20mmol/L,估计该地正常成年人血清胆 固醇均数95%可信区间。 29 三、可信区间的确切含义 u从1999年某市18岁男生身高值总体 N(=167.7cm, =5.3cm)中随机抽取100个样本 计算了100个估计的95%CI u其中有95个CI包含了 有5个不包含 =167.7cm 20号 161.00165.57 31号 161.17167.33 54号 168.05171.00 76号 167.71174.84 82号 167.98174.27 30 来自N(0,1)的100个样本所计算的95%可信区间示意 31 u正确性:可信度1,即区间包含总体参数 的理论概率大小,愈接近1愈好。 u精确性:区间的宽度,区间愈窄愈好。 u当样本含量为定值时,上述两者互相矛盾 。 若只顾提高可信度,则可信区间会变宽。 评价可信区间估计的优劣: 32 四、可信区间与参考值范围的区别 u可信区间用于估计总体参数,总体参数只 有一个 。 u参考值范围用于估计个体值的分布范围, 个体值有很多 。 u95%可信区间中的95%是可信度,即所求可 信区间包含总体参数的可信程度为95%。 u95%参考值范围中的95%是一个比例,即 所求参考值范围包含了95%的正常人。 33 第四节第四节 t t 检验检验 34 例 某医生测量了36名从事铅作业男性工人的 血红蛋白含量,算得其均数为130.83g/L,标 准差为25.74g/L。问从事铅作业工人的血红蛋 白是否不同于正常成年男性平均值140g/L? u样本均数与总体均数间差异的原因: 1.总体均数不同? 2.总体均数相同,差异由抽样误差造成? u统计推断方法 假设检验(hypothesis test) 35 1.进行检验假设 假设样本来自某一特定总体 2.确定检验水准 确定最大允许误差 3.选定检验方法计算检验统计量 计算样本与总体的偏离程度 4.计算与统计量对应的P值 5.作出结论 根据小概率反证法思想作出推断 假设检验一般步骤 36 t 检验(Students t-test) 设计 完全随机设计单样本 完全随机设计两样本 配对设计 要求 1.n较小(单组 60或两组合计 60) 2.样本随机地取自正态总体 3.两样本均数比较时所对应两总体 方差相等(homogeneity of variance) 37 例 某医生测量了36名从事铅作业男性工人的 血红蛋白含量,算得其均数为130.83g/L,标 准差为25.74g/L。问从事铅作业工人的血红蛋 白是否不同于正常成年男性平均值140g/L? 一、单样本t 检验 1.建立检验假设,确定检验水准 H0: =0=140g/L 铅作业男性工人的平均血红蛋 白含量与正常成年男性的相等 H1: 0 =0.05 38 2.计算检验统计量 3.确定P值,作出推断结论 |2.138| t0.05/2,35=2.030 P 2 或 1 2 单侧检验 H0: 1= 2 H1: 1 2 双侧检验。 单双侧检验主要根据专业知识预先确定。 双侧检验较保守和稳妥。 u检验水准:预先规定的拒绝假设H0时的最 大允许误差,它确定了小概率事件标准。 在实际工作中常取0.05,但并非一成不变。 64 u应根据变量和资料类型、设计方案、统 计推断的目的、方法的适用条件等选择 检验统计量。 u所有检验统计量都是在H0成立的前提条 件下计算出来的。 u检验统计量大小反映样本与总体的偏离 程度(如t值反映样本均数与总体均数 的偏离程度,以标准误进行标准化) 2.计算检验统计量 65 uP值是决策的依据 uP的含义是指从H0规定的总体中随机抽样, 其检验统计量等于及大于现有样本的检验 统计量的概率。即从H0假设总体中随机抽 到差别至少等于现有样本差别的机会。 u根据获得的事后概率P,与事先规定的 概率检验水准进行比较,看其是否为 小概率事件而得出结论。 3.确定P 值,作出推断结论 66 uP,按检验水准,拒绝H0,接受H1 有统计学意义(统计结论) statistical significance 可认为不同,高于(专业结论) uP,按检验水准,不拒绝H0 无统计学意义(统计结论) no statistical significance 还不能认为不同(专业结论) 不拒绝H0不等于接受H0,因此时证据不足 67 三、I型错误和II型错误 68 健康人与肝病病人的肝大指数分布 (所拟合的两个正态曲线各按100%面积绘制) 肝 大 指 数 健康人 H0 肝病病人 H1 第一类错误 误诊率 (假阳性率) 第二类错误 漏诊率 (假阴性率) 6.1 7.0 8.4 5 6891011 4 大,小;大,小。增加n可同时缩小,。 69 u可取单尾亦可取双尾。 uII型错误的概率大小用表示, 只取单尾, 值的大小一般未知,须在知道两总体差值 (如12等)、及n 时,才能算出。 u1称检验效能(power of a test),过去称 把 握度。为当两总体确有差异,按检验水准 所能发现该差异的能力。1只取单尾。 u拒绝H0,只可能犯I型错误,不可能犯II型 错误;不拒绝H0,只可能犯II型错误,不 可能犯I型错误。 70 四、假设检验应注意的问题 1.要有严密的研究设计 组间应均衡,具有可比性,除对比的主要因 素(如临床试验用新药和对照药)外,其它可 能影响结果的因素(如年龄、性别、病程、 病情轻重等)在对比组间应相同或相近。 71 u配对设计计量资料:配对t检验。 u完全随机设计两样本计量资料: 小样本(任一ni60)且方差齐: 两样本t检验 方差不齐: 近似t检验 大样本(所有ni60): u检验。 2.不同资料应选用不同检验方法 72 3.正确理解“significance”一词的含义 u过去称差别有或无“显著性”,易造成两 样本统计量之间比较相差很大的误解。 u现在称差别有或无“统计学意义”, 相应推断为:可以认为或还不能认为两 个或多个总体参数有差别。 73 4.结论不能绝对化 u因统计结论具有概率性质,故“肯定”、 “一定”、“必定”等词不要使用。 u在报告结论时,最好列出检验统计量的 值,尽量写出具体P值,而不简单写成 P 0.05,以便读者与同类研究进行比 较或进行循证医学时采用Meta分析。 74 5.统计“有意义”与医学“有意义” u统计“有意义”对应统计结论,医学“有意 义”对应专业结论。 u统计结论有意义,专业结论无意义,最 终 结论没有意义,样本含量过大或设计存在 问题。 u统计结论无意义,专业结论有意义,检 查 设计是否合理、样本含量是否足够。 75 6.可信区间与假设检验区别和联系 u可信区间可回答假设检验问题 H0: =0=140g/L 铅作业男性工人的平均血红蛋 白含量与正常成年男性的相等 H1: 0 =0.05 铅作业男性工人平均血红蛋白含量总体 均数的95%CI为(122.12,139.54) g/L, 未包括0=140g/L 按=0.05水准,拒绝H0 ,接受H1。 76 u可信区间说明量的大小即推断总体均数 所在范围,假设检验推断质的不同即判 断两总体均数是否不等。 u可信区间不但能回答差别有无统计学意 义,还能提示差别有无实际专业意义。 u可信区间不能够完全代替假设检验。可 信区间只能在预先规定概率的前提下 进行计算,而假设检验能获得一较为确 切的P值。 77 第七节第七节 * * 正态性检验正态性检验 和两样本方差比较的和两样本方差比较的F F检验检验 78 两小样本t 检验前提条件: 相应的两总体为正态总体 两总体方差相等,即方差齐性 配对t 检验前提条件: 每对数据差值的总体为正态总体 79 一、正态性检验(了解) 1.图示法 u概率图(probability-probability plot) 以实际累积频率(X)对正态分布理论累积频率 (Y)作散点图 u分位数图(quantile-quantile plot) 以实际分位数(X)对正态分布理论分位数 ( )作散点图 u如果实际值与理论值吻合,图中散点几乎 都在一直线上,可认为该资料服从正态分布 80 (168-167.69)/1.69=0.18 (164-167.69)/1.69=-2.18 (172-167.69)/1.69=2.55 81 2.计算法 u偏度(skewness)指分布不对称的程度和方向 ,用偏度系数(总体:1 样本:g1)衡量。 1=0 对称 1 0 正偏态 1 0 负偏态 u峰度(kurtosis)指分布与正态曲线相比的冒 尖或扁平程度,用峰度系数(总体:2 样本 :g2)衡量。 2=0 正态峰 2 0 尖峭峰 2 0 平阔 峰 u当同时满足对称和正态峰两个条件时,才 能 认为该资料服从正态分布。 82 u对偏度和峰度各用一个指标评定,其中以 矩法(method of moment)效率最高 u对偏度和峰度用一个指标综合评定 H0:1=0且 2=0,总体服从正态分布 H0:10且 20,总体不服从正态分布 =0.10(减少型错误) 83 二、两样本方差比较的F检验 u第一个样本方差既可能大于也可能小于第 二 个样本方差,是双侧检验。 u公式规定以较大方差作分子,F必然大于1 。 附表3仅给出不对称F分布右侧界值 84 研究目的:阿卡波糖胶囊降血糖效果 试验设计:同期随机对照试验 受试对象:40名II型糖尿病病人 试验组:阿卡波糖胶囊 对照组:拜唐苹胶囊 观测指标:试验8周后糖化血红蛋白下降值 85 (1)建立检验假设,确定检验水准。 (2)计
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江师范大学行知学院《朝鲜文学作品选读》2023-2024学年第二学期期末试卷
- 工程承包项目合同管理与进度协调研究-洞察阐释
- 环境样品分析技术-洞察阐释
- 经济全球化与文化认同的当代挑战-洞察阐释
- 医药包装自动化打包系统行业跨境出海项目商业计划书
- 乡村养蜂体验区行业深度调研及发展项目商业计划书
- 体育文化节行业跨境出海项目商业计划书
- 超声波清洗机升级行业跨境出海项目商业计划书
- 肿瘤标志物检测试剂行业深度调研及发展项目商业计划书
- 大数据驱动下企业财务分析的趋势与发展
- JB T 8925-2008滚动轴承汽车万向节十字轴总成技术条件
- (word版)2024年成人高考语文试题及答案
- MOOC Spark编程基础-厦门大学 中国大学慕课答案
- 大易通用能力测评题库
- 联邦学习技术在人工智能中的应用与发展前景
- 地块控制性详细规划说明书
- 深度学习数据增强
- 工程招标代理服务投标方案(技术方案)
- 【博物馆文创营销方案2600字】
- 分体空调施工方案及分体空调施工组织设计
- 隧道微台阶开挖施工工法实用文档
评论
0/150
提交评论