新人教a版必修1高中数学3.2.2 函数模型的应用实例教学过程(一)_第1页
新人教a版必修1高中数学3.2.2 函数模型的应用实例教学过程(一)_第2页
新人教a版必修1高中数学3.2.2 函数模型的应用实例教学过程(一)_第3页
新人教a版必修1高中数学3.2.2 函数模型的应用实例教学过程(一)_第4页
新人教a版必修1高中数学3.2.2 函数模型的应用实例教学过程(一)_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.2.2函数模型的应用举例第一课时 已知函数模型解实际问题例1、一辆汽车在某段路程中的行驶速率与时间的关系如图所示。(1)求略中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆车的里程表在汽车行驶这段路程前的读数为2004 km,试建立行驶这段路程时汽车里程表读数s km与时间t h的函数解析式,并作出相应的图象。解:(1)阴影部分的面积为501 + 801 + 901 + 751 + 651 = 360,阴影部分的面积表示汽车在这5小时内行驶的路程为360km。(2)根据上图,有,这个函数的图象如右图所示。hVH小结:由函数图象,可以形象直观地研究推断函数关系,可以定性地研究变量之间的变化趋势,是近年来常见的应用题的一种题型,其出发点是函数的图象,处理问题的基本方法就是数形结合。练习1:向高为H的水瓶中注水,注满为止,如果注水量V与水深h 的函数关系的图象如右图所示,那么水瓶的形状是( ) (A) (B) (C) (D)练习2:某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示。()写出图一表示的市场售价与时间的函数关系式;写出图二表示的种植成本与时间的函数关系式;()认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102,时间单位:天)例2、人口问题是当今世界各国普遍关注的问题,认识人口数量的变化规律,可以为有效控制人口增长提供依据。早在1798年,英国经济学家马尔萨斯就提出了自然状态下的人口增长模型:,其中t表示经过的时间,y 0表示t = 0时的人口数,r表示人口的年平均增长率。下表是1950 1959年我国的人口数据资料:年份1950195119521953195419551956195719581959人数/万人55196563005748258796602666145662828645626599467207(1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;(2)如果按上表的增长趋势,大约在哪一年我国的人口达到13亿?解:(1)设19511959年的人口增长率分别为r1,r2,r9。由,可得1951年的人口增长率。同理可得,于是,19511959年期间,我国人口的年均增长率为。令,则我国在19501959年期间的人口增长模型为。根据上表的数据作出散点图,并作出函数的图象(如图):可以看出,所得模型与19501959年的实际人口数据基本吻合。(2)将y = 130000代入,得。所以,如果按上表的增长趋势,那么大约在1950年后的第39年(即1989年)我国的人口就已达到13亿。小结:已知函数模型解实际问题主要有两类:(1)已知函数解析式形式,只须求待定系数,较易;(2)根据题目所给条件,能够列出两个变量、之间的关系式,从而得出函数解析式,这类题目的关键是审清题意,弄清常量、变量诸元素之间的关系。归纳:解函数应用题的步骤:解应用题就是在阅读材料、理解题意的基础上,把实际问题抽象转化为数学问题,然后再用相应的数学知识去解决,基本程序如下:1、阅读、审题:要做到简缩问题,删掉将要语句,深入理解关键字句;为便于数据处理,最好运用表格(或图形)处理数据,便于寻找数量关系。2、建模:将问题简单化、符号化,尽量借鉴标准形式,建立数学关系式。3、合理求解纯数学问题。4、解释并回答实际问题。练习:P104,1、2。作业:P107,习题3.2,A组:2、3、4。教学反思:第二课时 函数拟合问题例1、某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如下表所示:销售单价/元6789101112日均销售量/桶480440400360320280240请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润。解:由上表,销售单价每增加1元,日均销售量就减少40桶。设在进价基础上增加x元后,日均销售利润为y元,在此情况下的日均销售量为480 40 (x 1) = 520 40x(桶)。由于x 0,且520 40x 0,即0 x 13,于是可得。所以,当x = 6.5时,y有最大值。所以,只需将销售单价定为11.5元,就可获得最大的利润。练习1:(P106)某公司生产某种产品的固定成本为150万元,而每件产品的可变成本为2500元,每件产品的售价为3500元。(1)分别求出总成本y1(单位:万元),单位成本y2(单位:万元),销售总收入y3(单位:万元),总利润y4(单位:万元)与总产量x(单位:件)的函数解析式;(2)根据所求函数的图象,对这个公司的经济效益作出简单分析。练习2:某工厂生产一种机器的固定成本为5000元,且每生产100台需要增加投入2500元。对销售市场进行调查后得知,市场对此产品的需求量为每年500台。已知销售收入函数为:,其中x是产品售出的数量,。(1)若x为年产量,y为利润,求y = f (x) 的解析式;(2)当年产量为何值时,工厂的年利润最大,其最大值是多少?例2、某地区不同身高的未成年男性的体重平均值如下表:身高/cm60708090100110120130140150160170体重/kg6.137.909.9912.1515.0217.5020.9226.8631.1138.8547.2555.05(1)根据上表提供的数据,能否建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重y kg与身高x cm的函数关系?试写出这个函数模型的解析式。(2)若体重超过相同身高男性体重平均值的1.2倍为偏重,低于0.8倍为偏瘦,那么这个地区一名身高为175 cm,体重为78 kg的在校男生的体重是否正常?解:(1)以身高为横坐标,体重为纵坐标,画出散点图。根据点的分布特征,可考虑以作为刻画这个地区未成年男性的体重与身高关系的函数模型。如果取其中的两组数据(70,7.90),(160,47.25),代入得:,解得a2,b1.02。这样,我们就得到一个函数模型:。将已知数据代入上述函数解析式,或作出上述函数的图象,可以发现,这个函数模型与已知数据的拟合程度较好,这说明它能较好地反映这个地区未成年男性体重与身高的关系。(2)将x = 175代入,得,由于,所以,这个男生偏胖。练习3:18世纪70年代,德国科学家提丢斯发现金星、地球、火星、木星、土星离太阳的平均距离(天文单位)如下表:行星1(金星)2(地球)3(火星)4(?)5(木星)6(土星)7(?)距离0.71.01.65.210.0他研究行星排列规律后估测在火星和土星之间应该有一颗大的行星,后来果然发现了一颗谷神星,但不算大行星,它可能是一颗大行星爆炸后的产物,请你用函数的模型推测谷神星离太阳的平均距离,在土星外面是什么星?继续推测它与太阳的平均距离。练习4:某地区今年1月,2月,3月患某种传染病的人数分别为52,61,68。为了预测以后各月的患病人数,甲选择了模型,乙选择了模型,其中y为患病人数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论