




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【金版学案】2015-2016学年高中数学 第1章 解三角形章末知识整合 苏教版必修5题型1利用正、余弦定理解三角形解答下列各题:(1)在ABC中,若A30,a,b2,求B;(2)在ABC中,角A,B,C所对的边分别为a,b,c,若a,b2,sin Bcos B,求A.分析:已知三角形两边和其中一边的对角,求另一边的对角,根据问题条件可能出现唯一解、两解、无解的情况,解题时一定要根据问题条件,准确判定解析:(1)根据正弦定理,有,即sin B,得sin B.aA30,B为锐角或钝角即B45或135.(2)由sin Bcos B得sin1,B.由正弦定理,得sin A,又ab,AB.A.归纳拓展已知两边和其中一边的对角解三角形,一般用正弦定理,但此时三角形不能唯一确定,可能出现一解、两解、无解的情况,这时应结合“三角形中大边对大角,AB则sin Asin B”等关系来判定,也可以结合几何图形帮助理解记忆具体模式如图所示,关键是比较bsin A与a和b的大小当A为锐角,且bsin Aa时,一解,bsin Aa,无解,bsin Aa,两解,ab时一解,至于A90,A90,情况较易变式迁移1在ABC中,角A,B,C的对边分别为a,b,c,已知A,a,b1,则c为(B)A1B2C.1 D.解析:由正弦定理,sin B.又ab,AB.B为锐角B,于是C.ABC为直角三角形c2,故选B.例2 (1)在ABC中,am,bn,c,求C;(2)在ABC中,a7,b8,cos C,求c及最大角的余弦值分析:(1)为ABC中已知三边求一角,直接用余弦定理cos C求解即可(2)为ABC中已知两边及其夹角余弦求第三边,用c求最大角的余弦,不难想到“大边对大角”解析:(1)由余弦定理得cos C,将a,b,c的值代入上式,得cos C.0Cac,在ABC中,B最大cos B.归纳拓展余弦定理有三个方面的应用:一是已知三角形的两边和它们的夹角,可以由余弦定理求出第三边,进而求出其余两角;二是已知三角形的三边,利用余弦定理求出一个角,进而求出其他两角;三是正、余弦定理的综合应用,如已知三角形的两边及其一边的对角,除了能用正弦定理解三角形外,也可以用余弦定理来解三角形变式迁移2(2013湖南卷)在锐角ABC中,角A,B所对的边长分别为a,b,若2asin Bb,则角A等于(D)A. B.C. D.解析:由正弦定理和2asin Bb可得2sin Asin Bsin B,即sin A,又ABC为锐角三角形,A.题型2三角形形状的判断例3 在ABC中,a,b,c分别为角A,B,C的对边,且2asin A(2bc)sin B(2cb)sin C.(1)求A的大小;(2)若sin Bsin C1,试判断ABC的形状分析:只要根据已知条件找到三角形的边或角的关系,就可以确定三角形的形状解析:(1)由已知,根据正弦定理,可得2a2(2bc)b(2cb)c,即a2b2c2bc,由余弦定理得cos A,A120.(2)方法一由(1),BC60,B60C,由sin Bsin C1,得sin(60C)sin C1,即sin 60cos Ccos 60sin Csin C1,即sin(C60)1,而0C60,C30.故B30,ABC为等腰钝角三角形方法二由(1)b2c2bca2得sin2Bsin2Csin Bsin Csin2A,即(sin Bsin C)2sin Bsin C,sin Bsin C.与sin Bsin C1联立,解得sin Bsin C,而0B,C60,BC.ABC为等腰钝角三角形归纳拓展要注意正弦的多值性,否则可能漏解另外,还要注意等腰三角形或直角三角形与等腰直角三角形的区别判断三角形的形状,一般有以下两种途径:将已知条件统一化成边的关系,用代数方法求解;将已知条件统一化成角的关系,用三角方法求解在解三角形时的常用结论有:(1)在ABC中,ABabsin Asin Bcos Acos B.(2)在ABC中,ABC,ABC,则cos(AB)cos C,sin(AB)sin C,sincos.(3)在ABC中,a2b2,a2b2c2C,a2b2c20C.变式迁移3在ABC中,若cos2,试判断ABC的形状解析:方法一cos2,cos A,即.c0,c2a2b2.ABC为直角三角形方法二cos2,.cos A.cos A.sin Ccos Asin B.sin Ccos Asin(AC)sin Acos C0.0A,sin A0.cos C0.C90.故ABC为直角三角形题型3求三角形的面积例4 (1)在ABC中,已知a3,b4,C60,则ABC的面积为多少?(2)若三角形面积为,且b2,c,求A.分析:非特殊三角形面积的计算主要用Sbcsin Aabsin Cacsin B(1)直接用Sabsin C即可;(2)为逆用Sbcsin A.解析:(1)Sabsin C 34sin 6063.(2)Sbcsin A,2sin A,sin A.A60或120.归纳拓展三角形面积公式:Sahabcsin Apr,其中A,B,C分别为ABC的边a,b,c的对角,R,r分别为ABC的外接圆和内切圆半径,p(abc)变式迁移4已知ABC的三边长分别为a2,a,a2,且最大角的正弦值为,求这个三角形的面积解析:设是最大角,sin ,而60,120.(a2)2a2(a2)22a(a2)cos 120.解得a5,三边长为3,5,7.S35sin 120.5在ABC中,已知a,cos A,且b2bc2c20.(1)求b,c的值;(2)求ABC的面积解析:(1)由b2bc2c20得(bc)(b2c)0,即b2c,再由a2b2c22bccos A得3(2c)2c222c2,解得c,b2.(2)cos A,sin A.SABCbcsin A2.题型4正、余弦定理的应用如右图所示,A,B是海面上位于东西方向相距5(3)海里的两个观测点,现位于A点北偏东45,B点北偏西60的D点有一艘轮船发出求救信号,位于B点南偏西60且与B点相距20海里的C点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D点需要多长时间?分析:在ABD中,由正弦定理可求出BD,再在BCD中,用余弦定理求出CD,最后可求出时间t.解析:由题意知AB5(3)(海里),DBA906030,DAB904545,ADB180(4530)105.在DAB中,由正弦定理,得,BD10(海里)又DBCDBAABC60,BC20 (海里),在BCD中,由余弦定理得,CD2BD2BC22BDBCcosDBC3001 20021020900.CD30(海里),则需要的时间t1(小时)归纳拓展解三角形应用题的关键是将实际问题转化为解三角形问题其基本思路是:首先分析本题属于哪种问题(如测量距离、高度、角度等),然后依题意画出示意图,把已知和未知的量标在图中,最后根据边角关系选择相应的定理,同时注意近似计算的要求,解题后再还原为实际问题变式迁移62009年国庆阅兵式上举行升旗仪式,如图,在坡度为15的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 婚姻法知识竞赛试题及答案
- 公共事业管理人才培养专业测试题及答案
- 自尊水平测试心理试题及答案
- 《农业生物技术》植物组织培养技术-知识点训练卷7中职种植类专业(答案版)
- (正式版)DB65∕T 4914-2025 《小型医用压力蒸汽灭菌器定期检验与评定灭菌效果的方法》
- (正式版)DB2327∕T 071-2023 《大兴安岭防风栽培技术规范》
- T-CIATCM 030.6-2019 中医临床护理信息基本数据集 第6部分:产科护理记录
- 山东省海阳市美宝学校七年级安全教育教学设计:5 遇到挫折怎么办1
- 第4课 希腊城邦和亚历山大帝国(新教学设计)九年级上册历史(部编版)
- 九年级化学上册《6.2 二氧化碳制取的研究》说课稿 (新版)新人教版
- GB/T 20118-2025钢丝绳通用技术条件
- 餐饮服务员工考核评估规定
- 医疗美容设备行业设备租赁市场分析方案
- 2023年招标师考试案例分析真题及答案解析
- JJG 1030-2007超声流量计
- GB/T 8884-2017食用马铃薯淀粉
- 01综合管沟汇报
- 中国Flash市场发展现状讲解
- 《晋祠》 教学课件
- (完整版)英语四线格(A4打印)
- CAPP技术与实施课件
评论
0/150
提交评论