




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
在学生就要走出校门的时候,班级工作仍要坚持德育先行,继续重视对学生进行爱国主义教育、集体主义教育、行为规范等的教育,认真落实学校、学工处的各项工作要求第1章 不等式的基本性质和证明的基本方法 1.5.2 综合法和分析法学业分层测评 新人教B版选修4-5(建议用时:45分钟)学业达标一、选择题1.下面对命题“函数f(x)x是奇函数”的证明不是综合法的是()A.xR且x0有f(x)(x)f(x),f(x)是奇函数B.xR且x0有f(x)f(x)x(x)0,f(x)f(x),f(x)是奇函数C.xR且x0,f(x)0,1,f(x)f(x),f(x)是奇函数D.取x1,f(1)12,又f(1)12,f(x)是奇函数【解析】选项A、B、C都是从奇函数的定义出发,证明f(x)f(x)成立,从而得到f(x)是奇函数,而选项D的证明方法是错误的.【答案】D2.已知a0,b0,下列不等式中不成立的是()A.2B.a2b22abC.abD.2【解析】由(0,)且(0,),得2,所以A成立,B显然成立,不等式C可变形为a3b3a2bab2(a2b2)(ab)0.【答案】D3.若a,b,cR,ab,则下列不等式成立的是()A.B.a2b2C.D.a|c|b|c|【解析】ab,c210,.【答案】C4.设ab0,m,n,则()A.mnB.mnC.mnD.不能确定【解析】ab0,0,b.()2()2ab2(ab)2(b)0,()2()2,即mn.【答案】A5.已知0a10B.logablogba20C.logablogba20D.logablogba20【解析】0a1b,logab0,(logab)2,2,logab2,当且仅当logab1,即b1时等号成立.logablogba2,logablogba20.【答案】D二、填空题6.设a,b,c,则a,b,c的大小顺序是_. 【导学号:38000022】【解析】用分析法比较,ab8282.同理可比较得bc,所以abc.【答案】abc7.已知abc,且b2ac(ab)b,则实数a的取值范围是_.【解析】b2acabb2,a(cb)0,又cb0,a0.【答案】(0,)8.设a0,b0,则下面两式的大小关系为lg(1)_lg(1a)lg(1b).【解析】对数函数ylg x为定义域上的增函数,只需比较(1)与的大小即可.(1)2(1a)(1b)1ab2(1abab)2(ab).又由基本不等式得2(ab),(1)2(1a)(1b)0,即有lg(1)lg(1a)lg(1b).【答案】三、解答题9.已知abc0,求证:abbcca0.【证明】法一(综合法):abc0,(abc)20,展开得abbcca,abbcca0.法二(分析法):要证abbcca0,abc0,故只要证abbcca(abc)2,即证a2b2c2abbcca0,亦即证(ab)2(bc)2(ca)20,而这是显然的,由于以上相应各步均可逆,原不等式成立.10.已知函数f(x)lg,x,若x1,x2,且x1x2,求证:f(x1)f(x2)f.【证明】要证明原不等式成立,只需证明.x1,x2,x1x2,0.,lglg,即f(x1)f(x2)f.能力提升1.若直线1通过点M(cos ,sin ),则()A.a2b21B.a2b21C.1D.1【解析】动点M在以原点为圆心的单位圆上,直线1过点M,只需保证原点到直线的距离1.即1,故选D.【答案】D2.设a2,xR,Ma,N,则M,N的大小关系是()A.MNB.MNC.MND.MN【解析】a2,Ma(a2)2224.x222,N4,MN.【答案】D3.设abc,且恒成立,则m的取值范围是_. 【导学号:38000023】【解析】abc,ab0,bc0,ac0.又(ac)(ab)(bc)24,当且仅当,即2bac时等号成立,m4.【答案】(,44.已知a0,b0,ab1,求证:.【证明】ab1,(ab)21,a2b212ab,abababab2,欲证原不等式,只要证ab2,只要证ab.ab0,只要证4a2b233ab80,只要证(4ab1)(ab8)0,只要证ab或ab8.a0,b0,1ab2,ab,式成立.原不等式得证.配合各任课老师,激发学生的学习兴趣,挖掘他们的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CNFIA 233-2025无麸质酱油
- 工厂安全培训目标课件
- 工厂安全培训的重要性
- 浙江银行招聘-2026年平安银行宁波分行秋季校园招聘备考考试题库附答案解析
- 四川省成都市双流区九江初级中学2025年教师招聘备考考试题库附答案解析
- 哲学博士答辩指南
- 2025年宁夏回族自治区宁安医院公开招聘合同制工作人员备考考试题库附答案解析
- 2025广西南宁市金凯路小学招聘体育学科编外教师备考考试题库附答案解析
- 三维运动合成方法-洞察及研究
- 幼教音乐策划全解
- GB/T 24861-2024水产品流通管理技术规范
- 一年级古诗70首(拼音打印)
- DZ∕T 0283-2015 地面沉降调查与监测规范(正式版)
- 人事专员简历模板
- 围手术期安全管理
- 幼儿园食堂6T培训
- 《人类简史》读书分享交流
- 供应商质量管理工程师SQE培训材料课件
- 小孩子受伤调解协议书
- 公务员考试的数学备考指导
- 2024年纺织服装培训资料
评论
0/150
提交评论