九年级数学下册 第5章 二次函数小结与复习学案 (新版)苏科版_第1页
九年级数学下册 第5章 二次函数小结与复习学案 (新版)苏科版_第2页
九年级数学下册 第5章 二次函数小结与复习学案 (新版)苏科版_第3页
九年级数学下册 第5章 二次函数小结与复习学案 (新版)苏科版_第4页
九年级数学下册 第5章 二次函数小结与复习学案 (新版)苏科版_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

我带领班子成员及全体职工,积极参加县委、政府和农牧局组织的政治理论学习,同时认真学习业务知识,全面提高了自身素质,增强职工工作积极性,杜绝了纪律松散二次函数一、知识点:1. 二次函数的图像和性质0yxO0图 象开 口对 称 轴顶点坐标最 值当x 时,y有最 值当x 时,y有最 值增减性在对称轴左侧y随x的增大而 y 随x的增大而 在对称轴右侧y随x的增大而 y随x的增大而 2. 二次函数用配方法可化成的形式,其中 , .3. 二次函数的图像和图像的关系.4. 二次函数中的符号的确定.5. 二次函数的解析式:(1)一般式: ;(2)顶点式: 6. 顶点式的几种特殊形式. , , ,(4) . 7二次函数通过配方可得,其抛物线关于直线 对称,顶点坐标为( , ). 当时,抛物线开口向 ,有最 (填“高”或“低”)点, 当 时,有最 (“大”或“小”)值是 ; 当时,抛物线开口向 ,有最 (填“高”或“低”)点, 当 时,有最 (“大”或“小”)值是 二、典型例题:例1.已知二次函数,(1) 用配方法把该函数化为 (其中a、h、k都是常数且a0)形式,并画出这个函数的图像,根据图象指出函数的对称轴和顶点坐标.(2) 求函数的图象与x轴的交点坐标.例2. (2008年大连)如图,直线和抛物线都经过点A(1,0),B(3,2) 求m的值和抛物线的解析式; 求不等式的解集(直接写出答案)练习:1(2014年山东泰安,第17题3分)已知函数y=(xm)(xn)(其中mn)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()ABCD2(2014年山东泰安,第20题3分)二次函数y=ax2+bx+c(a,b,c为常数,且a0)中的x与y的部分对应值如下表:X1013y1353下列结论:(1)ac0;(2)当x1时,y的值随x值的增大而减小(3)3是方程ax2+(b1)x+c=0的一个根;(4)当1x3时,ax2+(b1)x+c0其中正确的个数为()A4个B3个C2个D1个3(2014年云南,第16题3分)抛物线y=x22x+3的顶点坐标是 4(2014年江苏南京,第16题,2分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x10123y105212则当y5时,x的取值范围是 5(2014扬州,第16题,3分)如图,抛物线y=ax2+bx+c(a0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a2b+c的值为0(第5题)(第6题)6( 2014珠海,第9题4分)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,則它的对称轴为 7( 2014福建泉州,第22题9分)如图,已知二次函数y=a(xh)2+的图象经过原点O(0,0),A(2,0)(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60到OA,试判断点A是否为该函数图象的顶点?8(2014年四川资阳,第24题12分)如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当ABM为等腰三角形时,求点M的坐标;(3)将AOB沿x轴向右平移m个单位长度(0m3)得到另一个三角形,将所得的三角形与ABC重叠部分的面积记为S,用m的代数式表示S参考答案:1C;2B;3顶点坐标是(1,2)40x450;6直线x=2;7解:(1)二次函数y=a(xh)2+的图象经过原点O(0,0),A(2,0)抛物线的对称轴为直线x=1;(2)点A是该函数图象的顶点理由如下:如图,作ABx轴于点B,线段OA绕点O逆时针旋转60到OA,OA=OA=2,AOA=2,在RtAOB中,OAB=30,OB=OA=1,AB=OB=,A点的坐标为(1,),点A为抛物线y=(x1)2+的顶点8解:(1)由题意可知,抛物线y=ax2+bx+c与x轴的另一个交点为(1,0),则,解得故抛物线的解析式为y=x2+2x+3(2)当MA=MB时,M(0,0);当AB=AM时,M(0,3);当AB=BM时,M(0,3+3)或M(0,33)所以点M的坐标为:(0,0)、(0,3)、(0,3+3)、(0,33)(3)平移后的三角形记为PEF设直线AB的解析式为y=kx+b,则,解得则直线AB的解析式为y=x+3AOB沿x轴向右平移m个单位长度(0m3)得到PEF,易得直线EF的解析式为y=x+3+m设直线AC的解析式为y=kx+b,则,解得则直线AC的解析式为y=2x+6连结BE,直线BE交AC于G,则G(,3)在AOB沿x轴向右平移的过程中当0m时,如图1所示设PE交AB于K,EF交AC于M则BE=EK=m,PK=PA=3m,联立,解得,即点M(3m,2m)故S=SPEFSPAKSAFM=PE2PK2AFh=(3m)2m2m=m2+3m当m3时,如图2所示设PE交AB于K,交AC于H因为BE=m,所以PK=PA=3m,又因为直线AC的解析式为y=2x+6,所以当x=m时,得y=62m,所以点H(m,62m)故S=SPAHSPAK=PAPHPA2=(3m)(62m)(3m)2=m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论