高中数学 3_1_2 两角和与差的正弦互动课堂学案 苏教版必修41_第1页
高中数学 3_1_2 两角和与差的正弦互动课堂学案 苏教版必修41_第2页
高中数学 3_1_2 两角和与差的正弦互动课堂学案 苏教版必修41_第3页
高中数学 3_1_2 两角和与差的正弦互动课堂学案 苏教版必修41_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

在学生就要走出校门的时候,班级工作仍要坚持德育先行,继续重视对学生进行爱国主义教育、集体主义教育、行为规范等的教育,认真落实学校、学工处的各项工作要求高中数学 3.1.2 两角和与差的正弦互动课堂学案 苏教版必修4疏导引导1.两角和与差的正弦公式sin(-)=cos(-+)=cos(-)+=cos(-)cos-sin(-)sin=sincos-cossin,即sin(-)=sincos-cossin.在上式中,以-代可得sin(+)=sincos+cossin.2.正确理解和差角的正弦公式(1)公式对于任意的角、都成立.(2)搞清sin()的意义,例如sin(+)是两角与的和的正弦,它表示角+终边上任意一点的纵坐标与原点到这点的距离之比,在一般情况下,sin(+)sin+sin,如=,=时,sin(+)=sin=1,sin+sin=+=1,sin(+)sin+sin.只有在某些特殊情况下,sin(+)=sin+sin.例如,当=0,=时,sin(0+)=sin=,sin0+sin=0+=,sin(0+)=sin0+sin.在学习时一定要注意:不能把sin(+)按分配律展开.(3)牢记公式并能熟练左、右两边互化.例如化简sin20cos50-sin70cos40,能观察出此式等于sin(20-50)=-sin30=-.(4)灵活运用和(差)角公式,例如化简sin(+)cos-cos(+)sin,不要将sin(+),cos(+)展开,而应就整个式子,直接运用公式sin(+)-=sin,这也是公式的逆用.3.有关点(向量)的一组旋转公式已知点P(x,y),与原点距离保持不变绕原点旋转角到点P(x,y),则公式推导如下:如下图所示:设xOP=,则cos=,sin=.x=rcos(+)=r(coscos-sinsin)=xcos-ysin,y=rsin(+)=r(sincos+cossin)=xsin+ycos.即4.形如asinx+bcosx(a,b不同时为零)的三角函数式可化为一个角的一个三角函数式.记住以下重要结论:asinx+bcosx=sin(x+)其中sin=,cos=,推导如下:考察以(a,b)为坐标的点P(a,b),设以OP为终边的一个角为,则cos=,sin=.于是asinx+bcosx=(sinx+cosx)=a2+b2(cossinx+sincosx)= sin(x+-).其中sin=,cos=.活学巧用【例1】化简下列各式(1)cos(80+3)cos(35+3)+sin(80+3)cos(55-3);(2)sin(x+)+2sin(x-)-cos(-x);(3).解析:(1)原式=cos(80+3)cos(35+3)+sin(80+3)sin(35+3)=cos(80+3)-(35+3)=cos45=.(2)原式=sin(x+)+2sin(x-)-cos-(x+)=sin(x+)+cos(x+)+2sin(x-)=2sin(x+)+cos(x+)+2sin(x-)=2sin(x+)cos+cos(x+)sin+2sin(x-)=2sin(x+)+2sin(x-)=2sin(x+)+2sin(x-)=2sin-(-x)+2sin(x-)=2sin(-x)+2sin(x-)=0.(3)原式=tan(-).【例2】 已知cos(+)=,cos2=-,、均为钝角,求sin(-).、(90,180),+,2(180,360).cos(+)=-0,cos2=-0.+,2(180,270).sin(+)=,sin2=.sin(-)=sin2-(+)=sin2cos(+)-cos2sin(+)=(-)(-)-(-)()=.【例3】 已知向量=(3,4),绕原点旋转30到的位置,求点P(x,y)的坐标.解析:x=xcos-ysin=3cos30-4sin30=3-4,y=xsin+ycos=3sin30+4cos30=3P的坐标(,).【例4】将下列各式化成Asin(x+)的形式.(1)sinx+cosx;(2)(sinx-cosx);(3)sin(-x)+cos(-x).解析:(1)sinx+cosx=(sinx+cosx)=(sinxcos+cosxsin)=2sin(x+).(2)(sinx-cosx)=(sinx-cosx)=2(sinxcos-cosxsin)=2sin(x-).(3)sin(-x)+cos(-x)=sin(-x)+3cos(-x)=2sin(-x)+cos(4-x)=sin(-x)cos+cos(-x)sin=sin(-x+)=sin(-x).配合各任课老师,激发学生的学习

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论