中考数学专题复习 专题三 开放探究型问题课件_第1页
中考数学专题复习 专题三 开放探究型问题课件_第2页
中考数学专题复习 专题三 开放探究型问题课件_第3页
中考数学专题复习 专题三 开放探究型问题课件_第4页
中考数学专题复习 专题三 开放探究型问题课件_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题三 开放探究型问题 开放探索问题是相对于有明确条件和明确结论的封 闭型问题而言的,它是条件或结论给定不完全、答案 不唯一的一类问题这类问题一直是近年中考的热点 ,重在考查同学们分析、探索能力以及思维的发散性 。解决此类问题类问题 的方法,可以不拘形式,需要通过观过观 察、比较较、分析、综综合及猜想,展开发发散性思维维,充 分运用已学过过的数学知识识和数学方法,得出正确的结结 论论在解开放探究题时题时 ,常通过过确定结论结论 或补补全条件 ,将开放性问题转问题转 化为为封闭闭性问题问题 根据其特征大致 可分为:条件开放型、结论开放型、综合开放型等三 类 专题诠释 三个类型的解题方法 (1)解条件开放问题的规律方法:由已知的结论反 思题目应具备怎样的条件,即从题目的结论出发, 结合图形挖掘条件,逆向思维,逐步探寻,是一种 分析型思维方式,它要求解题者善于从问题的结论 出发,逆向思维,多方向寻因; (2)解结论开放问题的规律方法:充分利用已知条 件或图形特征,通过由因导果,顺向推理或进行猜 想、类比、联想、归纳,透彻分析出给定条件下可 能存在的结论,然后经过论证作出取舍 学法指导 (3)解条件和结论都开放问题的规律方法:此类问 题没有明确的条件和结论,并且符合条件的结论具 有多样性,需将已知的信息集中进行分析,探索问 题成立所必须具备的条件或特定的条件应该有什么 结论,通过这一思维活动得出事物内在联系,从而 把握事物的整体性和一般性 学法指导 条件开放型问题 【例1】(2015日照)小明在学习了正方形之后,给 同桌小文出了道题,从下列四个条件: AB=BC, ABC=90, AC=BD , ACBD中 , ,使ABCD为正方形(如图) ,现有下列四种选法,你认为其中错误的是( ) A. B. C. D. 选两个作为补充条件 【点评】 跟踪训练 (2015武威)已知ABC内接于O,过过点A作直线线 EF (1)如图图所示,若AB为为O的直径,要使EF成为为 O的切 线线,还还需要添加的一个条件是(至少说说出两 种):_或者 _ (2)如图图,AB是非直径的弦,CAEB,求 证证:EF是O的切线线. 结论开放型问题 【例2】 已知二次函数y=ax2+bx+c的图象如图所示, 对称轴为直线x=1写出 。 单纯探索结论型单纯探索结论型 至少3个符合题意的结论 【点评】 结论开放型问题 【例3】(2015黑龙江)正方形ABCD的边长是4,点 P是AD边的中点,点E是正方形边上的一点,若 PBE是等腰三角形,则腰长为_. 结论结论多样多样开放型开放型 (E) E E AB CD P E AB CD P 【点评】 结论开放型问题 【例4】(2015贺州)如图,已知抛物线 y=-x2+bx+c 与直线AB相交于A(3,0),B(0,3)两点 (1)求这条抛物线的解析式; (2)设C是抛物线对称轴上的一动点,求使CBA=90 的点C的坐标; (3)探究在抛物线上是否存在点P, 使得APB的面积等于3?若存在, 求出点P的坐标;若不存在, 请说明理由 存在探索结论存在探索结论 型型 【点评】 CE 结论开放型问题 【例5】(2015烟台)如图,直线l:y= x+1与坐 标轴交于A,B两点,点M(m,0)是x轴上一动点, 以点M为圆心,2个单位长度为半径作M,当M与 直线l相切时,求m的值。 探求条件变化下的结论开放型探求条件变化下的结论开放型 综合开放型问题 【例6】如图,点D、E在ABC的边BC上,连接AD、 AEABAC;ADAE;BDCE以上面三个 等式中的两个作为命题的题设,另一个作为命题的 结论,构成一个真命题,并进行证明。 【点评】 跟踪训练 如图图所示,在ABE和ACD中,给给出四个条件: ABAC;ADAE;AMAN;ADDC ,AEBE. 现现将四个条件分别贴别贴 在四个学生的后背 上,进进行如下游戏戏:其中三个学生站在讲讲台左边边, 另一个学生站在讲讲台的右边边,要求以左边边三个学生后 背上的条件作为题设为题设 ,右边边一个学生背上的条件作 为结论为结论 ,使之组组成一个正确的说说法. 这这个游戏戏可以进进行几轮轮? 试试写出简简要思路。 几个注意点 (2015武威)已知ABC内接于O,过过点A作直线线 EF (1)如图图所示,若AB为为O的直径,要使EF成为为 O的切 线线,还还需要添加的一个条件是(至少说说出两 种):_或者 _ (2)如图图,AB是非直径的弦,CAEB,求 证证:EF是O的切线线. 1.条件 结论! 【例5】(2015烟台)如图,直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论