疲劳强度模型和S-N曲线.ppt_第1页
疲劳强度模型和S-N曲线.ppt_第2页
疲劳强度模型和S-N曲线.ppt_第3页
疲劳强度模型和S-N曲线.ppt_第4页
疲劳强度模型和S-N曲线.ppt_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章 疲劳强度模型S-N曲线 1、S-N曲线 n材料的疲劳性能用作用的应力范围S与到破坏时的寿命N之间的关 系描述,即S-N曲线。 n寿命N定义为在给定应力比R下,恒幅载荷作用下循环到破坏的循 环次数。 问题:如何得到S-N曲线? 实验得到! 疲劳破坏有裂纹萌生,扩展至断裂三个阶段,这里破 坏指的是裂纹萌生寿命。因此,破坏可以定义为: 1)标准小尺寸试件断裂。对于高、中强度钢等脆性材料 ,从裂纹萌生到扩展至小尺寸圆截面试件断裂的时间很短 ,对整个寿命的影响很小,考虑到裂纹萌生时尺度小,观 察困难,故这样定义是合理的。 2)出现可见小裂纹,或有515应变降。对于延性较 好的材料,裂纹萌生后有相当长的一段扩展阶段,不应当 计入裂纹萌生寿命。小尺寸裂纹观察困难时,可以监测恒 幅循环应力作用下的应变变化。当试件出现裂纹后,刚度 改变,应变也随之变化,故可用应变变化量来确定是否萌 生了裂纹。 材料疲劳性能试验所用标准试件,(通常为710件 ),在给定的应力比R下,施加不同的应力范围S,进行疲 劳试验,记录相应的寿命N,即可得到图示S-N曲线。 N S 由图可知,在给定的应力比下,应力范围S越小,寿命 越长。当应力范围S小于某极限值时,试件不发生破坏, 寿命趋于无限长。 由S-N曲线确定的,对应于寿命N的应力范围 ,称为寿 命为N循环的疲劳强度。寿命N趋于无穷大时所对应的应 力范围S,称为材料的疲劳极限。 由于疲劳极限是由试验确定的,试验又不可能一直做下 去,故在许多试验研究的基础上,所谓的无穷大一般被定 义为: 钢材,107次循环,焊接件:2*106。 2、S-N曲线的数学表达式 NSm=A 两边取对数, LogN +mLogS=LogA 选取几个不同的应力范围平 , ,进行n组疲 劳试验,对各组实验数据 应力范围循环次数 两个参数: m,A 假定 为某一概率分布 (一般为Weibull分布) 存活率 则可求得存活率为p的,分别对应于 , , 的 试验次数多 少 , 假定应力范围水平下疲劳寿命N的分布为对数正态分布 时,采用极大似然法拟合得到P-S-N曲线为 其中m定值, 表示存活率为p时的 正态分布 标准差 个 对于船海工程,一般构件 主要构件 n在实际设计或计算中,为了得到适合的S -N曲线,需要做实验吗? n可以查阅相关规范或资料,得到S-N曲线 F2 F2 F F2 总结: S-N曲线表征结构的抗疲劳能力,由 实验得到。 实验中根据结构形式和载荷类型选 取S-N曲线,此时S-N曲线都是对应于一 定的概率水平的! 3、平均应力的影响 材料的疲劳性能,用作用应力S与到破坏时 的寿命N之间的关系描述。在疲劳载荷作用 下,最简单的载荷谱是恒幅循环应力。 R=-1时,对称恒幅循环载荷控制下,试验 给出的应力寿命关系,是材料的基本疲劳 性能曲线。 n本节讨论应力比R变化对疲劳性能的影响。 n如图所示,应力比R增大,表示循环平均应 力Sm增大。且应力幅Sa给定时有 nSm=(1+R)Sa/(1-R) n一般趋势 n当Sa给定时,R增大,平均应力Sm也增大 。循环载荷中的拉伸部分增大,这对于疲 劳裂纹的萌生和扩展都是不利的,将使得 疲劳寿命降低。 平均应力对S-N曲 线影响的一般趋势 如图所示。 n平均应力Sm=0时的S-N曲线是基本S-N曲线 。当Sm0,即拉伸平均应力作用时,S-N 曲线下移,表示同样应力幅作用下的寿命 下降,或者说在同样寿命下的疲劳强度降 低,对疲劳有不利的影响。SmS(拉)S(扭) n假定作用应力水平相同,拉压时高应力区 体积等于试件整个试验段的体积;弯曲情 形下的高应力区体积则要小得多。我们知 道疲劳破坏主要取决于作用应力的大小( 外因)和材料抵抗疲劳破坏的能力(内因 )二者,即疲劳破坏通常发生在高应力区 或材料缺陷处。假如图中的作用的循环最 大应力Smax相等,因为拉压循环时高应力 区域的材料体积较大,存在缺陷并由此引 发裂纹萌生的可能性也大。 n所以,同样的应力水平作用下,拉压循环 载荷作用时的寿命比弯曲时短;或者说, 同样寿命下,拉压循环时的疲劳强度比弯 曲时低。 n扭转时疲劳寿命降低,体积的影响不大, 需由不同应力状态下的破坏判据解释,在 此不作进一步讨论。 n2)尺寸效应 n不同试件尺寸对疲劳性能的影响,也可以 用高应力区体积的不同来解释。应力水平 相同时,试件尺寸越大,高应力区域材料 体积就越大。疲劳发生在高应力区材料最 薄弱处,体积越大,存在缺陷或薄弱处的 可能就越大,故大尺寸构件的疲劳抗力低 于小尺寸试件。或者说,在给定寿命N下, 大尺寸构件的疲劳强度下降;在给定的应 力水平下,大尺寸构件的疲劳寿命降低。 n3)表面光洁度 n由疲劳的局部性显然可知,若试件表面粗 糙,将使局部应力集中的程度加大,裂纹 萌生寿命缩短。材料的基本S-N曲线是由精 磨后光洁度良好的标准试件测得的。 n4) 表面处理 n一般来说,疲劳裂纹总是起源于表面。为 了提高疲劳性能,除前述改善光洁度外, 常常采用各种方法在构件的高应力表面引 入压缩残余应力,以达到提高疲劳寿命的 目的。 n若循环应力如图中1-2-3-4所示,平均应力 为Sm,则当引入压缩残余应力Sres后,实 际循环应力水平是原1-2-3-4各应力与-Sres 的叠加,成为1-2-3-4,平均应力降为Sm ,疲劳性能将得到改善。 n表面喷丸处理;零件冷挤压加工;在构件 表面引入残余压应力,都是提高疲劳寿命 的常用方法。材料强度越高,循环应力水 平越低,寿命越长,延寿效果越好。在有 应力梯度或缺口应力集中处采用喷丸,效 果更好。 n表面渗氮或渗碳处理,可以提高表面材料 的强度并在材料表面引入压缩残余应力, 这两种作用对于提高材料疲劳性能都是有 利的。试验表明,渗氮或渗碳处理可使钢 材疲劳极限提高一倍。对于缺口试件,效 果更好。 n5) 环境和温度的影响 n材料的S-N 曲线一般是在室温、空气环境下 得到的。在诸如海水、酸碱溶液等腐蚀介 质环境下的疲劳称为腐蚀疲劳。腐蚀介质 的作用对疲劳是不利的。腐蚀疲劳过程是 力学作用与化学作用的综合过程,其破坏 机理十分复杂。影响腐蚀疲劳的因素很多 ,一般有如下趋势: na)载荷循环频率的影响显著 n无腐蚀环境作用时,在相当宽的频率范围 内(如200Hz以内),频率对材料S-N曲线 的影响不大。但在腐蚀环境中,随着频率 的降低,同样循环次数经历的时间增长, 腐蚀的不利作用有较充分的时间显示,使 疲劳性能下降的影响明显。 nb)在腐蚀介质(如海水)中,半浸入状态 (或海水飞溅区)比完全浸入更不利。 nc)耐腐蚀钢材,抗腐蚀疲劳的性能较好; 许多普通碳钢的疲劳极限则下降较多,甚 至因腐蚀环

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论