




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的 最基本最重要的方法. 1、等差数列求和公式: 2、等比数列求和公式: 3、 4、 5、 复习复习 基础训练基础训练 一、公式法一、公式法 例1 已知 , 求 的前n项和 由等比数列求和公式得 公式法求和的前提是由已知条件能得到 此数列是等差或等比数列,因此,要求不仅 要牢记公式,还要计算准确无误。 即时小结即时小结 在什么情况下,用公式法求和? 例2 例题分析例题分析 二、分组求和法二、分组求和法 =(2+4+2n) 分组求和 解: 例题分析例题分析 求前n项和关键的第一步: 即时小结即时小结 在什么情况下,用分组求和? 例3 求数列的前n项项和:, 解:设设 将其每一项拆开再重新组合得 (分组) 当a1时时,(分组求和) 当时时, 变式训练1:求和 解:设 分组求和 变式训练变式训练 三、倒序相加法三、倒序相加法 如果一个数列an,与首末两项等距离的两项 之和等于首末两项之和,可采用把正着写和与倒 着写和的两个和式相加,就得到一个常数列的和 ,这一求和的方法称为倒序相加法. 把数列中的相邻几项合并,进而求和的 方法称为并项求和法. 点评:此题的关键是把相邻两项分别合并、 分解因式后,转化为等差数列求和. 四、并项求和法 50 分析:此数列为特殊数列,其通项的分母是 两个因式之积,且两数相差1,若把通项作适当 变形为 例2 裂项 例题分析例题分析 五、裂项相消法 把数列的通项拆成两项之差,即数列的 每一项都可按此法拆成两项之差,在求和时 一些正负项相互抵消,于是前n项的和变成 首尾若干少数项之和,这一求和方法称为裂 项相消法. 五、裂项相消法 技巧小结:常见的裂项变形 解: 求和 例题分析例题分析 裂项相消 解:由题意设 变式训练变式训练 已知 ,若 前n 项和为10,则项数n为_. 120 变式训练变式训练 如果一个数列的各项是由一个等差数列 与一个等比数列对应项乘积组成,此时求 和可采用错位相减法. 六、错位相减法 例题分析例题分析 解:设 得 (设计错位) (错位相减) 例3.求数列 前n项的和 在什么情况下,用错位相减法求和?在什么情况下,用错位相减法求和? 即时小结即时小结 变式训练变式训练 七、利用数列的通项求和 先根据数列的结构及特征进行分析,找出 数列的通项及其特征,然后再利用数列的 通项揭示的规律来求数列的前n项和,是一 个重要的方法. 例 求 之和. 解:由于 (找通项及特征) 练习 1.数列 的 前 n项之和为Sn,则Sn的值等于( ) (A) (B) (C) (D) A 2.练习:求下列数列前n项的和Sn: 解:由题可知, 的通项是等差数列2n 1 的通项与等比数列 的通项之积 设 (设制错位) 得 (错位相减) 再利用等比数列的求和公式得: 3、求和 : 把数列的通项拆成两项之差,即数列的 每一项都可按此法拆成两项之差,在求和时一些 正负项相互抵消,于是前n项的和变成首尾若干 少数项之和,这一求和方法称为裂项相消法. 1.公式法: 4.错位相减法: 2.分组求和法: 3.裂项相消法: 课堂小结课堂小结 直接利用等差等比数列的求和公式 有一类数列,既不是等差数列, 也不是等比数列,若将这类数列适当拆开,可分 为几个等差、等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025云南省玉溪市红塔区监察委员会招聘监察辅助人员(4人)备考练习试题及答案解析
- 2025四川达州市中心医院社会志愿者招募备考练习试题及答案解析
- 学校劳务合同
- 2025年铜陵市铜官区小学非编教师招聘2名备考练习题库及答案解析
- 关于辖区环境卫生大整治会议记录范文
- 靶向药物设计策略-第1篇-洞察及研究
- 石油化工厂隐患排查指南
- 2025全国小学生“学宪法、讲宪法”活动知识竞赛题库及答案
- 小学生日常行为规范养成教育实施方案
- 幼儿园教师3-6岁儿童学习与发展指南和专业知识竞赛试题(含答案)
- GB/T 25146-2010工业设备化学清洗质量验收规范
- GB/T 14825-1993农药可湿性粉剂悬浮率测定方法
- GB/T 12008.7-2010塑料聚醚多元醇第7部分:黏度的测定
- 文化政策与法规(第一课)
- 最全最好的血液净化课件资料
- 色彩基础知识ppt
- 寻找消失的滇缅路:松山战痕课件
- 中小学教师职业道德规范解读
- 部编人教版《道德与法治》九年级上册教材介绍课件
- 华科版五年级全册信息技术教案(共24课时)
- 政府预算理论与实务(第四版)全套教学课件
评论
0/150
提交评论