初中数学教学方法例谈.ppt_第1页
初中数学教学方法例谈.ppt_第2页
初中数学教学方法例谈.ppt_第3页
初中数学教学方法例谈.ppt_第4页
初中数学教学方法例谈.ppt_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初中数学教学方法例谈 上海 闵志勤 新课程对初中数学教学的要求: 全面实施新课程时,要求我们推进初中数学教学 方法的改革和创新,转变初中数学教师的教学行为和 学生的学习方式,注重学生的学习情感和学习态度的 培养,展现师生互动、学生主动参与和积极探索的教 学过程。那么,教师如何根据新课程标准的要求,注 重改变知识传授的教学行为,充分发挥学生的主体作 用呢? 一、明确课堂教学目标,不断改进教学方法 新课程的课堂教学注重追求技能、过程、情感、态度、 价值观的有机结合,在知识教学的同时,关注过程方法和情 感体验,突出表现在: 把过程方法视为课程教学的重要目标,从课程目标的 高度突出了过程方法的地位。尽量让学生通过自己的阅读、 探索、思考、观察、操作、猜想、质疑和创新等认识过程中 获得知识,使得结论和过程有机融合起来,知识和能力和谐 发展。 关注学生的情感生活和情感体验,努力使课堂教学过 程成为学生一种愉悦的情绪生活和积极的情感体验。为此, 现在的课堂教学不能只是简单地传授知识,还要关心学生是 怎么学会的,他们学的过程有什么体验,学生在学习过程中 得到了怎样的发展,是否把促进学生的发展落实到课堂教学 活动中去,以此来评价自己的教学水平和教学效果,不断改 进和完善教学方法。 二、切实抓好课堂教学,进一步提高教学效果 1.建立和谐的师生关系,激发学习兴趣 教师应加强与学生感情的交流,增进与学生的友谊,关 心他们,爱护他们,热情地帮助他们解决学习和生活中的困 难,做学生的知心朋友,使学生对教师有较强的信任感、友 好感、亲近感。当教师的情感灌注在教学内容中,激起了学 生的学习情感时,学生就能够更好地接受教师所教的学习内 容。和谐的师生关系,能产生情感期待效应,使每个学生都 能感受教师的期待,从而激发学生强烈的求知欲,每一节课 ,教师都要满腔热情,让学生从教师的精神中受到激励,感 到振奋。要关心、尊重每一个学生,使每一个学生都感到“ 老师在期待我”,要用自己的眼神、语言表达对学生的爱, 创设一种愉悦的课堂气氛。 2.改革课堂结构,发挥学生的主体作用 在过去的课堂教学中,教师讲、学生听、教师做、学生 看的现象较为普遍。课堂上以教师单项传授知识为主,实现 的是教师到学生的单项传输,这违背了“教为主导,学为主 体”的原则,长此以往,学生在学习上的依赖性增强,缺乏 独立思考问题和解决问题的能力,最终导致厌学情绪,致使 学习效率普遍降低。教学中,要充分发挥学生的主体作用, 多给学生留出一些让他们自主学习和讨论的空间,使他们有 机会独立思考、相互讨论,并发表各自意见。利用教师的主 导作用,引导学生积极、主动参与教学过程。由于教学过程 中教学本质是数学思维活动的展开,数学课堂上学生的主要 活动是通过动脑、动手、动口参与数学思维活动。教师的主 导作用在于教学生去学,既要帮助学生学会,也要帮助学生 会学;不仅要鼓励学生参与,而且要引导学生主动参与,这 样才能使学生的主体性得到充分的发挥和发展,进而不断提 高数学教学效果。 常见的新课程下课堂教学环节设计: 创设情景问题解决知识应用巩固反馈 创设情景: 根据教材的特点、教学的方法和学生的具体学情,把学生引 入一种与问题有关的情景中,让学生通过观察,不断积累丰富的 感性认识,让学生在实践感受中逐步发展认知,提高学生的综合 能力。在数学课堂教学中情景教学的运用,可以达到提高学生的 求知欲。教育学家乌申斯基说:没有丝毫兴趣的强制学习,将会 扼杀学生探求真理的欲望。兴趣是学习的重要动力,也是最好的 老师。常用实际问题或设置悬念导入新课来激发学生的求知欲; 关键在教师要创设好问题情景,必须要从学生的学习兴趣出发, 要从知识的形成过程出发,要贴近学生生活,要带有激励性和挑 战性问题。只有这样,才能引发学生的自主性学习,使学生的认 知过程和情感过程统一起来。 问题解决: 在已有知识基础上,应用类比、迁移、自主探究等方法 解决问题。 、自主探究,构建新知 “以学生发展为本”是新课程理念的最高境界,要发展学生 智力,培养学生能力,教师在教学过程中,始终把学生放在主 体的位置,教师所做的备课、组织教学、教学目标的确定、教 学过程的设计、教学方法的选用等等工作,都从学生的实际出 发,要在课堂上最大限度地使学生动口、动手、动脑,极大地 调动学生学习的积极性和主动性,养成良好的自学习惯,培养 刻苦钻研精神。促进学生主动参与、主动探索、主动思考、主 动实践。如果创设的情境达到了前面的要求,那么学生会自然 地产生一种探究的欲望。教师只要适当地组织引导,把学习的 主动权交给学生,让学生自主地尝试、操作、观察、动手、动 脑,完成探究活动。 、合作交流,完善认知 在教学中,通过创设问题情景,合作小组内自主探索、交流、对话,获 得成效。小组之间互相交流、评价,达到教学互动、互促,形成比、学、赶 、帮的学习氛围,从而使学生在合作交流的过程中学会与他人合作,并能与 他人交流思维的过程和结果,体会在解决问题过程中与他人合作的重要性和 感受获得成功的喜悦。组织学生合作交流要注意以下几点: 合理分组。按学生学习可能性水平与学生品质把学生分成不同层次, 实行最优化组合,组建 “学习合作小组”; 培养和训练学生的合作技能。即要提出合作建议让学生学会合作,小 组合作交流要充分体现学生的自主性,而且要求学生按一定的合作程序有效 地开展活动; 教师的激励性的评价是进一步促进合作的催化剂。评价应是更多地重 视对小组的评价,注重小组成员的参与度及活动结果中的成果,从而培养学 生的合作精神,缩小优差生的距离; 教师要参与学生的小组活动。教师既要巡视并检查学生对问题的解决 情况,又要收集学生的学习信息,以便适时引导、点拨,促进其思维的不断 深化,完善认知。 知识应用: 初中数学教学的目的不仅要求学生掌握好数学的基础知 识和基本技能,还要求发展学生的能力,培养他们良好的个 性品质和学习习惯。在实现教学目标的过程中,数学思想方 法对于打好“双基”和加深对知识的理解、培养学生的思维能 力有着独到的优势,它是学生形成良好认知结构的纽带,是 由知识转化为能力的桥梁。因此,在数学教学中,教师除了 基础知识和基本技能的教学外,还应重视数学思想方法的渗 透,注重对学生进行数学思想方法的培养,这对学生今后的 数学学习和数学知识的应用将产生深远的影响。从初中阶段 就重视数学思想方法的渗透,将为学生后续学习打下坚实的 基础,会使学生终生受益。因此,初中数学教师要培养学生数 学思想方法,这些思想有:方程思想 、函数思想 、分类讨论 思想 、数学建模思想 、归纳、猜想与探索思想 、转化思想 、整体思想 、数形结合思想 圆 的 周 长 教学目标: 1、 通过操作实验,得出圆的周长与直径的数量关系,理 解圆周率的意义。 2、 利用圆周长的计算公式,能正确地进行简单计算。 3、 在操作实验中,培养学生的观察、比较、分析、综合 及动手操作能力,发展学生合作、交流的意识。 4、 结合圆周率的学习,对学生进行爱国主义教育。 教学重点:圆的周长公式的正确运用 教学难点:掌握测量圆周长的方法,理解圆周率的意义。 教学过程: 一、创设教学情境、认识圆的周长 (看屏幕)两只小狗分别沿着边长为100米的正方形和直径 为100米的圆的路线跑回到原出发点,谁跑的距离长呢?学 了这节课后你们就会解答这个问题了。 小白狗所跑的路程实际上就是求这个正方形的什么?(正 方形的周长) 什么是正方形的周长?怎样计算正方形的周长?(围成正 方形四条边长的总和叫做正方形的周长,周长=边长 乘以4 )周长与边长有关 要求小黄狗所跑的路程,实际上就是求圆的什么?(圆的 周长) 那什么圆的周长呢?又怎样计算圆的周长呢? 这节课我们就来研究这个问题(板书课题) 我们已经知道,围成圆的这条线是一条什么线?(一条曲 线),这条曲线的长就是圆的什么?(周长)谁来说说什么 是圆的周长 定义:围成圆的曲线的长叫做圆的周长。(板书) 二、讨论圆周长的测量方法 1、(用铁丝演示)如果我们用直尺直接测量圆的周长,你觉得方便吗?为 什么(不方便,因为直尺是直的,而圆的周长却是曲的)有没有办法把这 条曲线变直?(有,只要把它截断拉直就变成一条线段)这条线段的长就 是什么的长?(圆的周长)现在就可以用什么去测量这条线段的长度?( 直尺)圆的周长虽然不能用直尺把它直接测量出来,但是我们可以用展开 的方法,通过“化曲为直”只要量出这条线段的长,我们就可以知道这个圆 的周长。(出示一圆片)这个圆周要展开就麻烦,看谁最聪明用什么方法 也可以化曲为直测量出这个圆周长呢?(用线去绕)怎么绕?可以绕给同 学看看吗?绕好后,怎样就知道了圆的周长? 用线去绕的注意点:绕线时要和圆的边缘重合,用线绕圆一周以后,捏紧 这两个正好连接的端点,把线拉直(老师动画演示)除此以外还有没有别 的方法也能测量出圆的周长?(把圆放在直尺上滚动一周)怎么知道他刚 好滚动了一周呢?(在圆上做个记号) 滚动法的注意点:在圆上取一点作个记号,并对准直尺的零刻度线,然后 把圆沿着直尺滚动,直到这一点又对准了直尺的另一刻度线,这时候圆就 正好滚动一周。(老师动画演示) 三、动手操作、发现规律 1、操作:每一组都有一圆硬币,用两种方法来测量它的 周长?把结果填入表格,精确到0.1厘米 用围和滚的办法可以把圆的周长转化为直线来测量。是否 所有圆的周长都可以用这两种方法呢?黑板上有一个圆或者 有一个圆形的游泳池,你能不能用以上方法去测量。(不能 )?这说明围、滚的办法不是什么样的圆都能用。这就需要 我们探讨出一种求圆周长的一种既简便又准确的方法。我们 已经知道正方形的周长与它的边长有关,周长是边长的4倍 ,圆的周长是否也与圆内某线段长有关系呢?(演示多媒体 )引导发现圆的周长与什么有关系?(圆的直径越短,它的 周长就越短;圆的直径越长,它的周长就越长。)就是圆的 周长与直径有关系(屏幕显示) 2)圆的周长究竟与直径有什么关系呢?这个问题要同学 们自己去发现。请同学们再测量出圆的直径,并算出圆周长 除以直径所得的商,填入表格里(保留两位小数)。 测量对象 圆的周长 (厘米) 圆的直径 (厘米) 周长除以直径的商 1 2 3 发现规律:看了几组同学的测算结果,你有什么发现? (圆的周长总是直径的3倍多一些)。 3)认识圆周率: (1)揭示圆周率:圆的周长总是直径的3倍多一些,是个固定不变的数 ,我们把圆的周长与直径的商叫做圆周率,用表示。 (2) 引出圆周率的发展史,及时对学生进行潜移默化的爱国教育。 约2000年前,中国的古代数学著作周髀算经中就有:“周三径一”的 说法,意思是说圆的周长是直径的3倍。约1500年前,我国有一位伟大的数 学家、天文学家祖冲之,他计算出圆周率应在3.1415926和3.1415927之间, 成为世界上第一个把圆周率的值计算精确到6位小数的人。他的这一项伟大 成就比国外数学家得出这样的精确数值的时间至少早一千年。这是我们中华 民族的骄傲。是个无限不循环小数,在计算过程中通常取3.14。 四、总结圆的周长的计算公式 在探究了圆的周长和直径间的关系后,学生自主推导圆周 长计算公式并交流。通过小结明确计算圆的周长所需条件。 圆的周长 = 直径 圆周率 C = d 圆的周长 =半径 圆周率2 C = 2r“ 从公式看出,知道什么条件可以求出圆周长?” “直径、半径。” “如果圆的周长已知,怎样才能求出圆的半径或直径? 五、练练做做、巩固新知 例题1.两只小狗谁跑的距离长呢? 例题2. 圆形水池的半径为2.5米,求它的周长是多少米? (规范解题格式) 例题3. 一颗卫星围绕地球飞行,飞行轨道近似为圆形, 已知卫星距离地球表面约500千米,飞行了14圈,问卫星一共 飞行了多少千米? (地球的半径约为6400千米) 练习: 1:判断题 (1) 大圆的圆周率大,小圆的圆周率小。( ) (2) 圆的半径扩大5倍,圆的周长也扩大5倍。 ( ) (3) 无论圆的大小,圆的周长总是直径的倍。( ) (4) 圆周率3.14 ( ) 2、求出下列各圆的周长 (1)d=2厘米 (2) r=2厘米 3、右图是一个由半圆和一条直径所组成的图形,求这个图 形的周长 4、如图所示,求跑道内圈一圈长多少米?(单位:米) 六、课外引深、拓展思维(思考题) 七、自主小结 同学们,今天我们学习了一个新的知识“圆的周长”谁来 说说你学到了哪些知识? 方程思想: 方程知识是初中数学的核心内容,掌握、理解方程思 想并应用于解题十分必要,所谓方程思想就是从分析问 题的数量关系入手,适当设定未知数,运用定义、公式 、性质、定理和已知条件、隐含条件,把所研究的数学 问题中已知量和未知量之间的数量关系,转化为方程或 方程组等数学模型,从而使问题得到解决的思维方法, 方程思想对解决与等量有关的数学问题十分有效。 函数思想: 函数知识揭示了在运动与变化过程中,量与量间存在的 一般性规律,是初中数学的主要内容,研究函数的性质与图象 ,即是探寻用运动,变化的观点来观察,分析问题的方法,因 此,如果我们能够运用函数的观点、方法去考虑分析问题,根 据问题的条件及所给数量关系,构造函数关系式,使原问题在 新函数关系中实现转化,再借助函数的图象与性质,就能化难 为易。 分类讨论思想: 在数学中,分类思想是根据数学本质属性的相同点和不 同点,把数学的研究对象区分为不同种类的一种数学思想, 正确应用分类思想,是完整解题的基础。正确的分类应当符 合两条原则: (1)分类应按同一标准进行; (2)分类应当不重复,不遗漏。分类后,对各个情况分别 进行研究,得出不同情况下的结论,这就是讨论。 数学建模思想: 数学建模思想是指从实际问题中,发现、提出、抽象、 简化、解决、处理问题的思维过程,它包括对实际问题进行 抽象、简化,建立数学模型,求解数学模型,解释验证等步 骤。数学建模的关键是善于通过对实际问题的分析,抓住其 本质,联想相应的数学知识,建立数学表达式,并应用其性 质找到解决问题的途径。 归纳、猜想与探索思想: 根据给定的信息,结合已掌握的知识,作出一种可能存在 的规律性、性质性的结论推断,这便是猜想的过程,尽管这种 猜想出的结论并非一定正确,但可从中积累经验与教训。 合理的猜想,是正确解决问题的前奏,它的思路一般是从 简单的、局部的、特殊的情况出发,经过提炼、归纳、猜想未 知,寻找一般规律,获取新结论,再作推理、论证。 归纳猜想题的一般过程:“分析特殊事理归纳一般结 论应用”,解这类题要善于分析已知事例,探寻规律,再 得出一般结论,完成创造过程。 转化思想: 转化是解数学题的一种重要的思维方法,转化思想是分 析问题和解决问题的一个必要的基本思想,不少数学思想都 是转化思想的体现,就解题的本质而言,解题即意味着转化 ,即:把生疏问题转化为熟悉问题; 把抽象问题转化为具体问题; 把复杂问题转化为简单问题; 把一般问题转化为特殊问题; 把高次问题转化为低次问题; 把未知条件转化为已知条件; 把一个综合问题转化为几个基本问题; 把顺向思维转化为逆向思维。 如:数形结合思想,就是数与形之间的相互转化。 整体思想: 研究某些数学问题时,往往不是以问题的某个组成部分为 着眼点,而是有意识放大考察问题的视角,将要解决的问题 看作一个整体,通过研究问题的整体形式、整体结构或作整 体处理以后,达到顺利而又简捷地解决问题的目的,这就是 整体思想,它是一种重要的数学观念,一些数学问题,若拘 泥常规,从局部着手,则举步维艰,若整体考虑,则畅通无 阻。 数形结合思想: 数学是研究数量关系和空间形式的一门科学,每个几何 图形中都蕴藏着一定的数量关系,而数量关系常常又可以通 过图形的直观性作出形象的描述,数形结合思想就是把代数 、几何知识相互转化、互相利用的一种解题思想。数形结合 思想,将包括图形、图表、图景等与数的知识相结合的一类 问题的解决方法。 初中数学教学应加强数学思想方法的渗透 数学概念、法则、公式、性质等知识都明显地写在教材 中,是有“形”的,而数学思想方法却隐含在数学知识体系 里,是无“形”的。因此,作为教师首先要更新观念,从思 想上不断提高对渗透数学思想方法重要性的认识,把掌握数 学知识和渗透数学思想方法同时纳入教学目标,把数学思想 方法教学的要求融入备课环节。其次要深入钻研教材,努力 挖掘教材中可以进行数学思想方法渗透的各种因素,对于每 一章每一节,都要考虑如何结合具体内容进行数学思想方法 渗透,渗透哪些数学思想方法,提出不同阶段的具体教学要 求。应该看到,对学生数学思想方法的渗透不是一朝一夕就 能见到学生数学能力的提高,而是有一个过程。数学思想方 法必须经过循序渐进和反复训练,才能使学生真正地有所领 悟。 总之,在数学教学中,只要切切实实把握好上述几个典型 的数学思想,同时注意渗透的过程,依据课本内容和学生的认 知水平,从开始就有计划的渗透,就一定能提高学生的学习效 率和数学能力。 巩固反馈: 从学生熟悉的原始问题开始,通过操作一系列“梯度合适 的”“小变化”题目过渡,最终解决较难的新题目,一般地,我们 把基于原问题加以变化的这些新问题,称为变式题。 关于变式题的分类,分为“概念性变式”和“过程性变式”,“形 式变式”、“方法变式”、“内容变式”,“公式变式、图形变式、 解法变式”,“封闭性变式题”和“开放性变式题”等。 问题变式的核心是数学结构的学习,逐步增加认知负荷,逐 步驱动高层的数学思维,逐步由表层类比(数学和字母的变化 )向结构类比(因式分解的一般规则)转化,由表层学习向结 构学习转化,逐步增加输出深层结构的学习结果,逐步增加对 数学本质的深层体会,使数学学习由起点(例题)到终点(变 式题)深层经历。 变式教学的优势在于,变式题不同于记忆型题目和高层思维 型题目(如开放题),而是在记忆型题目和高层思维型题两个“极端 ”之间保持“平衡”,渐渐连续地增加认知负荷,教学的题目设计 更接近循序渐进的规律。 直角三角形的性质 一、教学目标: 掌握直角三角形性质定理2,并初步应用这条性质定理,通过学 生自己动手实践操作,知道直角三角形性质定理产生过程,从而激 发学生的学习兴趣,以及增强爱国主义热情。 二、教学过程: 1、创设情景,产生问题 在2008年北京奥运会场馆建设中,如果在A、B、C、D四处修建 四座奥运村,且ACB=ADB=90,请问如何在四边形ACBD内部确 定一座体育场馆,使四座奥运村到这座体育

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论