高考新趋势与数学复习要领.ppt_第1页
高考新趋势与数学复习要领.ppt_第2页
高考新趋势与数学复习要领.ppt_第3页
高考新趋势与数学复习要领.ppt_第4页
高考新趋势与数学复习要领.ppt_第5页
已阅读5页,还剩99页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

07高考新趋势与数学复习要领 王林全 华南师范大学 数学科学学院 报告主要内容 n数学新课程主干内容分析; n大纲,课标,考纲的异同点分析; n文科,理科教学要求异同点分析; n年高考趋势的分析与估计; n相关的教学与复习对策 数学函数与基本初等函数 n幂函数, n用二分法求方程近似解缌 n函数模型及其应用; n对于分段函数要求学生能 掌握和应用; n要求对分段函数的理解和 运用 n对于反函数降低了教 学要求,只是把指数 函数和对数函数作为 反函数的具体例子, n不要求学生掌握反函 数的一般定义,也不 要求求某个函数的反 函数。 平面解几初步,立体几何初步 n增加了空间直角坐标系,简单几何体的 三视图,要求掌握柱、锥、台、球及其 简单组合体的特征性质; n降低要求的内容有三垂线定理,不把它 作为定理提出,而只作为例题出现。 n对于正棱锥和球的性质,从要求掌握, 降低为不作要求。 算法是新增的必修内容 n是数学及其应用的重要部分,又是计算机科学 的重要基础; n了解算法的意义,利用逻辑框图表示解决问题 的过程,理解逻辑框图的三种基本逻辑结构 顺序、条件分支、循环; n掌握五种基本的算法语句:赋值语句、输入语 句、输出语句、条件语句、循环语句。 n统计增加了茎叶图,并要求了解最小二乘法的 思想 三角函数,平面向量,三角变换 n三角函数中,删减了知三角函数值求角 ; n在平面向量内容中删减了线段的定比分 点公式,以及坐标平移公式等。 n在三角恒等变换内容中,要求能推导和 、差、二倍角的正弦余弦正切公式,并 能推导和差化积、积化和差以及半角公 式等,但不要求记忆。 解三角形,数列,不等式 n解三角形由初中移到高中,要求能用来 解决实际问题; n不等式部分,减少了分式不等式; n数列部分,加强了函数观点的渗透,要 求学生体会等差数列与一次函数,等比 数列与指数函数的关系。 推理与证明要求的变化 专题专题内容的增加与要求的提高 常用逻辑逻辑 用 语语 增加全称量词词与存在量词词 框图图包括流程图图与结结构图图,了解流程 图图的实际应实际应 用,是新增内容 推理与证证明增加合情推理与演绎绎推理,直接 证证明与间间接证证明,体会公理化思 想 选修,教学要求的变化 圆锥圆锥 曲线线与方 程 抛物线线和椭圆椭圆 与椭圆椭圆 是选选修1 和选选修2的共同内容;选选 修2多学双曲线线 导导数及其应应用通过过有关优优化的使用问题问题 ,体 会导导数的在解决实际问题实际问题 的应应 用;选选修2新增定积积分与微 积积分基本定理 计计数原理2,相当于原有高中的排列 组组合内容,从必修降为为只在选选 修2出现现。 高中数学选考内容 不等式选讲选讲是原高中不等式的扩扩展性内容, 增加绝对值绝对值 不等式、柯西不等 式以及不等式的证证明 坐标标系与参数 方程 是高中极坐标标与参数方程的扩扩展 性内容;增加柱坐标标系和球坐标标 系,要求写出直线线、椭圆椭圆 、抛 物线线、双曲线线的参数方程 几何证证明选讲选讲是初中数学的扩扩展性内容,要求 证证明圆圆周角定理,相交弦定理, 以及丹特林定理的一些结结果 高中数学学习的新要求 n新课程倡导自主探索、动手实践、合作 交流、阅读自学的学习方式。 n设置了数学探究、数学建模、实习作业 等学习项目。高中阶段至少安排较为完 整的一次数学探究、一次数学建模活动 , n根据课程内容与实际情境的联系,在统 计、线性规划、视图等专题,安排适当 的实习作业。 主干知识和新增内容受到关注 n高考数学试题注意涵盖高中代数,立体几何, 平面解析几何,概率统计,平面向量与空间向量 ,导数及其应用等,它们是高中数学课程的主 干知识。 n函数的定义域,值域,单调性,奇偶性,函数符号 的运用等有关知识,都是高中代数的主干知识 之,历来受到重点考查。 n空间向量,概率统计,导数及其应用等,是高中 新课程的新增内容,将在高考中受到进一步关 注. 函数概念是数学教育的灵魂 n以函数概念为中心,将全部数学教材集 中在它的周围,进行充分的综合。” n高中数学课程设计中,把函数作为贯穿 整个高中数学课程始终的主线,它也是 高等数学的一条主线。 n那末,应如何把握高中阶段函数的教学 ?学生学完函数内容,应留下什么呢? 对函数概念的认识 函数是刻画变量之间依赖关系的模型。 函数是联结两类对象的桥梁。 用映射的观点刻画函数,它反映两个数 集之间的关系,在两个数集之间架起一 座桥梁。 函数可以用平面图形来表示。 函数是平面上点的集合,是一定范围内 的一条曲线。 函数的变化反映了它所刻画的 自然规律的特征 n函数的变化反映了它所刻画的自然规律 的特征 n对于函数的单调性,从代数的角度看, 就是一个变量随另一个变量的变化而变 化的规律,从几何的角度看,就是研究 函数图像走势的变化规律。 对单调性认识的两个阶段 n第一阶段,要求理解单调性的图形直观 ,理解单调性的定义,通过大量的具体 函数,理解单调性在研究函数中的作用 。 n第二阶段,导数是描述函数变化率的概 念,导数概念可以帮助我们对“函数的 变化”有进一步了解。 周期性是函数的最基本的性质 之一 n学会用周期的观点来看待周围事物的变化是非 常重要的。正余弦函数、正余切函数都是刻画 周期变化的函数模型。 n用周期的观点来研究函数,可以使我们集中研 究函数在一个周期里的变化,在此基础上,就 可以了解函数在整个定义域内的变化情况。 n周期性反映了函数图形往复循环的性质。高中 数学课程中,不讨论一般函数的周期性,只对 基本的具体三角函数讨论其周期性,例如,正 弦、余弦、正切函数的周期性。 奇偶性也是函数的重要性质 n奇偶性反应了函数图形的对称性质,偶函数图 形是关于y轴对称的,奇函数图形是关于原点 对称的。 n奇偶性可以帮助我们更加准确和集中地研究函 数的变化规律。 n高中数学课程中,对于一般函数的奇偶性,不 做深入讨论,只对基本的具体函数讨论其奇偶 性,例如,简单幂函数的奇偶性。 掌握几个重要的函数模型 n幂函数、指数函数、对数函数、三角函 数是基本初等函数,这些函数是最基本 的,也是最重要的。 n还有简单的分段函数,一些有实际背景 的函数,等等。这些都是基本的、重要 的函数模型。 线性函数 n线性函数y=ax+b可以经过变换化为最简 单的幂函数,它把x轴变成了一条直线; 它是函数关系中最常见的,也是最简单 的; n在很多情况下,在研究比较复杂的函数 时,我们常常用它在一点附近来近似表 示复杂的函数,“以直代曲”是微分的基 本思想;在统计相关分析中,线性函数 即线性关系是最基本的。 常见的幂函数 n正整数指数幂函数y=xn也是简单的函数 ,也是好的函数。所谓好,是指它具有 任意阶导数,非常的光滑。它们还有一 个极为重要的性质,对于任意一个“好 的函数”,都可以用整数指数幂函数的 代数和来近似地表示,称为泰勒公式 n高中要求掌握的幂函数是:, x, x,y=x, y=x 指数函数、对数函数是重要的 函数模型 n对数函数(底数大于1)、正整数指数幂函数 ( x大于零)、指数函数(底数大于1),这 三类函数都是随着自变量的增加而增加,但是 ,它们增长的速度是不同的; n对数函数最慢,正整数幂函数快一些,指数函 数最快,在实际中,我们常常分别称为:对数 增长,多项式增长,指数增长。这些是刻画增 长的最基本的模式。 三角函数是研究周期现象的重 要模型 n三角函数是刻画周期现象最基本的模型,三角 函数包括正弦函数、余弦函数、正切函数等等 。现实生活中很多的周期现象都可以直接用这 些三角函数表示。 n三角函数也是最基本的周期函数,通过三角函 数可以帮助我们更好地理解周期函数;三角函 数也都是好的函数,具有任意阶导数;三角函 数的代数和可以用来表示更多的函数。 平面向量及其正交分解 n在向量的学习中,我们引入了“基”的概 念,向量(1,0)和(0,1)就是标准 正交基,平面上任意一个向量都可以唯 一地用标准正交基表示。 n如前面所说,对某些函数类,整数指数 幂函数和三角函数就能起到“基”的作用 。 基本函数模型的教学要求 n学生应该从三方面掌握: n图像,即从几何直观的角度把握函数的变化情 况; n基本变化,即从代数的角度把握函数的变化情 况,如,指数变化之所以快是因为指数运算将 和变为积,对数变化之所以慢是因为对数运算 将积变为和; n背景,即从函数模型的原型的角度把握函数的 变化情况。 函数是高中数学的一条主线 n函数作为主线,贯穿于整个高中数学课 程中。 n特别是在方程、不等式、线性规划、算 法、随机变量等内容中都突出的体现了 函数思想。 用函数的观点看待方程 n解方程f(x)=0看成求函数y=f(x)的零点,求 方程的解就变成了思考函数图形与x轴的相交 关系,变成了考虑函数的局部性质。 n如果函数y=f(x)连续,且y=f(x) 在区间a,b 两端点的值异号,即f(a) f(b)0,即方程 f(x)=0在区间a,b内有解。如果函数具有这 样的性质,我们就可以运用二分法近似的求出 方程的解。 例:判断方程x2x6=0的根 的存在性。 4 0 4 x 6 y A 6 14 B C 函数与不等式 n函数y=f(x) 的图象把坐标平面分成三部分( 这里假设函数的定义域是全体实数):函数图 象自身,即;函数图象以上的部分,即;函数 图象以下的部分,即。再加上x轴,就把坐标 平面分成若干区域。 n解不等式就是确定对应于某个区域的x的范围 。 n可以根据函数的图象,函数图象与x轴的交点 (方程f(x)=0的解)等来解不等式。因此,不 等式也是函数的局部性质。 函数与线性规划 n在讨论线性规划问题时,有两个关键环节,一 个是对可行域(目标函数的定义域)的理解, 另一个认识目标函数的变化趋势。 n解线性规划问题,可归结为以下算法: n第一步,确定目标函数; n第二步,确定目标函数的可行域; n第三步,确定目标函数在可行域内的最值。 线性规划的应用问题 n例2 医院用甲、乙两种原料为手术后的 病人配营养餐,甲种原料每10 g含5单 位蛋白质和10单位铁质,售价3元;乙 种原料每10 g含7单位蛋白质和4单位铁 质,售价2元。若病人每餐至少需要35 单位蛋白质和40单位铁质,试问:应如 何使用甲、乙原料,才能既满足营养, 又使费用最省? 约束条件与目标函数 n如上例,设甲、乙两 种原料分别用为10x, 10y (单位:g),所需费 用为z (单位:元), 则 约束条件为 n目标函数为 数列是特殊的离散型函数。 n它的定义域一般是指非负的正整数,有时也可 以为自然数集,或其无限子集。 n数列通常称为离散函数,离散函数是相对定义 域为实数或者实数的区间的函数而言的。 n等差数列、等比数列是最基本的数学模型,在 我们日常经济生活中几乎许多经济问题都可以 归结为等差数列、等比数列模型。 高中数学第二主线几何主线 n几何研究的图形可分为两类,一类是直边或直 面图形,例如,直线,由直线围成的三角形, 由平面围成的四面体、长方体等;另一类是曲 边或曲面图形,例如,圆,球等。 n在中学几何中,基本几何图形点、线、面之间 的位置关系主要有平行、垂直、包含(如点在 直线上,线在平面内,线与线、面与面重合等 ),由基本图形围成的平面图形之间的关系主 要有全等、相似、位似等。图形的度量主要有 夹角、长度、面积、体积等。 几何研究图形的方法 n中学几何研究图形的方法主要有 : n综合几何的方法, n解析几何的方法, n向量几何的方法, n函数的方法等。 几何的方法研究图形的性质 n复杂的图形转化为简单的图形,把空间 的图形转化为平面图形。 n空间两直线的垂直问题转化为平面上两 直线的垂直(如,三垂线定理), n利用三视图研究空间几何体等。 n在综合几何方法中,平移、旋转、对称 等是研究图形性质的基本方法。 解析几何方法是用代数方法研 究几何图形的性质 n用解析几何方法研究图形,首先要建立坐标系 ,建立起“点”与“数对”之间的一一对应关 系。 n然后,建立几何图形与方程之间的联系。 n再通过用代数的方法研究方程来实现研究几何 图形性质的目的。 n同一个几何图形,由于建立坐标系时坐标原点 的选择不同,在不同坐标系下的方程的代数表 现形式是不同的。 向量几何的方法 n就是用向量及其运算来研究几何图形的 位置关系和度量问题。 n首先用向量及其运算表示几何图形,例 如,用向量表示点,用两个不共线向量 的线性组合表示平面,用向量数量积表 示由一个点和一个法向量确定的平面等 。 n然后,利用向量的运算性质来研究几何 图形的位置关系和度量。 几何是培养数学能力的载体 n把数学所特有的逻辑思维和形象思维有 机地结合起来。 n几何思想主要体现在几何直观能力,即 把握图形的能力。 n包括空间想象力、直观洞察力、用图形 的语言来思考问题的能力。借助几何这 个载体,可以培养学生的逻辑推理能力 。 解析几何重点是帮助学生理解 数形结合的基本思想 n建立起“点”与“数对”之间的一一对 应关系,形成一座代数与几何之间的桥 梁。、另一个主要思想是建立方程与曲 线之间的联系。 n帮助学生初步形成如下的观念:可以用 “方程”表示“曲线”,反之,“曲线 ”是“方程”的图像。 选修1、2设立圆锥曲线与方程 n宇宙中,物体的运动轨迹大多可以用圆锥曲线 近似的表示; n几乎所有的光学仪器都是圆锥曲线(面)的应 用。这些都是圆锥曲线不可替代的理由。 n研究圆锥曲线有两种方法,综合几何的方法和 解析几何的方法。高中数学课程中选择解析几 何的方法。 n高中对圆锥曲线的讨论是初步的,主要目的是 进一步理解解析几何的思想。 向量有代数与几何的双重性质 n向量可以用来表示空间中的点、线、面 。 n以坐标系的原点为起点,向量就与空间 中的点建立了一一对应关系; n一点和一个非零向量可以唯一确定一条 直线,它通过这个点且与给定向量平行 ; n一个点和一个非零向量,可以唯一确定 一个平面,该平面过这个点且与给定向 量垂直。 对向量作用的正确估计 n中学引入向量是因为用向量比用综合几何的方 法简单、容易。这种看法是不全面的。 n虽然有许多问题,用向量处理确实比用综合几 何方法简单,但也可以找到用综合几何的方法 处理更简单的问题。 n向量之所以被引入到中学,这是因为向量在数 学中占有重要的地位。向量作为一个既有方向 又有大小的量,在数学中是一个最基本的概念 。在现代数学的发展中起着不可替代的作用。 选修2的空间向量与立体几何 n定位是“定量地”思考立体几何问题。一方面 ,比较严格地讨论基本图形的位置关系, n另一方面,从距离、角度定量地讨论基本图形 的关系。立体几何问题有两种基本思路。一个 是综合几何的方法,一个是向量的方法。 n选修特别强调使用向量的方法,这种方法将 来应用的面更大一些。这是高中数学课程的一 个变化。 选修中的几何内容 n选修4中,与几何有直接关系的有以下专 题:“几何论证选讲”,“坐标系与参 数方程”,“不等式选讲” ; n扩展数学视野,面向进一步的学习; n几何直观,空间想象,把握图形,运用 图形语言等等都是广泛地贯穿在任何数 学课程的基本思想。 算法的三种基本结构 n顺序结构的算法的操作顺序是按照书写 顺序执行的; n选择结构的算法是根据指定的条件进行 判断,由判断的结果决定选取执行两条 分支路径中的一条。 n循环结构的算法要根据条件是否满足决 定是否继续执行循环体中的操作。 五种基本的算法语句 n在高中的数学课程中,不要求介绍算法 语言,仅仅需要了解基本语句, n输入语句,输出语句,赋值语句,条件 语句,循环语句,等等。 n用自然语言描述算法; n用框图语言描述算法; n用基本语句(伪代码)描述算法。 算法内容的设计 n一部分介绍算法的基础知识, n包括算法基本思想, n算法基本结构, n算法基本语句, n以上可以称作算法的“三基”。这部分 内容安排在必修数学3中。 算法在高中数学的申延 n注意把算法的思想融入相关数学内容中。算法 思想是贯穿在高中数学课程始终的基本思想。 n例如,二分法求方程的解;点到直线的距离、 点到平面的距离、直线到直线距离;立体几何 中有关的性质定理的证明过程;一元二次不等 式;线性规划;等等内容中,都运用了算法思 想。 n考题设计的难点:不同课本使用不同语言 运算内容的设计 n向量计算,包括平面向量和空间向量; 另一部分是数系的扩充与复数。 n在指数、对数、三角函数,导数等内容 中,蕴含一些新的运算对象和运算规律 。 n排列组合计算;随机变量及其概率算离 散型随机变量及其分布列的计算; n数据处理的统计计算,等等。 导数的计算 n求函数的导数 n了解函数单调性和导数的关系;能利用 导数研究函数的单调性,会求函数的单 调区间,对多项式函数一般不超过三次. n了解函数在某点取得极值的必要条件和 充分条件;会用导数求函数的极大值、 极小值,对多项式函数一般不超过三次 ;会求闭区间上函数的最大值、最小值. 导数的应用 n生活中的优化问题. n会利用导数解决某些实际问题 n定积分与微积分基本定理 n 了解定积分的实际背景,了解定积分 的基本思想,了解定积分的概念. n 了解微积分基本定理的含义. 计数原理 n会用分类加法计数原理或分步乘法计数原理分 析和解决一些简单的实际问题. n理解排列、组合的概念. n能利用计数原理推导排列数公式、组合数公式. n能解决简单的实际问题. n能用计数原理证明二项式定理. n会用二项式定理解决与二项展开式有关的简单 问题. 概率的相关计算 n理解取有限个值的离散型随机变量及其分布列 的概念. n理解超几何分布及其导出过程,并能进行简单 的应用. n了解条件概率和两个事件相互独立的概念,理 解n 次独立重复试验的模型及二项分布,并能 解决一些简单的实际问题. n能计算简单离散型随机变量的均值、方差,并 能解决一些实际问题. n利用实际问题的直方图,了解正态分布曲线的 特点及曲线所表示的意义. 了解四类常见的统计方法 n独立检验:了解独立性检验(只要求22 列联 表)的基本思想、方法及其简单应用. n假设检验;了解假设检验的基本思想、方法及 其简单应用. n聚类分析;了解聚类分析的基本思想、方法及 其简单应用. n回归分析;了解回归的基本思想、方法及其简 单应用. 选考内容和专题 n理科 n几何证明选讲 n坐标系与参数方程 n不等式选讲 n文科 n几何证明选讲 n坐标系与参数方程 07高考数学科命题趋势 -稳中求变,照顾差异 n从依纲命题到依课程标准命题; n考试时间,形式,学科分值不变; n题型结构不变选择,填空,解答 ;设置选考题。 n包含难度为低,中,高档,中档为 主; 变中求稳,反复考虑 n以课标和考纲为据,对命题的内容和范 围严格审查; n控制难度,稳定师生情绪; n控制选考题题量,减少变异因素; n注意选考题的等值性; n对考试中的人文因素多加思考。 07高考数学科主要变化 n记分形式恢复为原始分; n为文理科设置不同的试卷; n考查内容包括课标规定的必修内容,必 选内容和选修的选考内容; n文科选考内容限制为个,理科选考内 容限制为个 近年高考广东数学成绩比较 年份全卷满分平均分得分率 01年150分72.760.49 02年150分77.350.52 03年150分62.570.42 04年150分61.080.41 05年150分67.660.45 06年150分77.990.52 高考广东数学选择题成绩比较 年份满分平均分得分率 0160 0260 0360 0460 055036.740.73 065035.300.71 高考广东数学填空题成绩比较 年份满分平均分得分率 052011.910.59 062011.190.56 课标为准,考纲为据 n课标是高考命题的基准,超标的数学知 识将不在考试范围内; n考纲规定的内容是课标规定内容的子集 ,例如,选修从专题减为只考 个; n体会过程以及阅读材料的要求有所减少 ; 文理有异,分别对待 n文科 n抛物线定义,图形, 标准方程,文科只要 求了解; n同左,不要求; n同左,不要求; n同左,不要求; n理科 n同左,理科要求掌握 n了解曲线与方程的对 应和关系 n了解空间向量概念, 掌握其计算和应用 n定积分和微积分基本 定理 抓住主干,推陈出新 n对数学基础知识的考查,既要全面又要 突出重点 ; n支撑学科知识体系的重点内容,要占有 较大的比例,构成数学试卷的主体。 n注重学科的内在联系和知识的综合性, 不刻意追求知识的覆盖面。 n理年高考的主干内容,保持了基本的稳 定性。 集中精力,突出重点 n课标,考纲以外的内容,暂不复习; n例如,解三角方程,复杂的三角恒等变 换,对数式的较复杂的变形 ,反三角函 数变形与求值等,暂不予以复习。 n阅读材料,某些推理和计算过程的提炼 暂不予以复习。 n对教学过程和复习过程有不同的要求。 研究新理念,抓住新内容 n概率统计,导数及其应用,函数模型, 空间向量,逻辑框图,基本的算法语句 等是新增内容,在复习中就要加以注意 。 n近年高考已经经加大了对课对课 程的新增内容 的考查查力度,对对于概率统计统计 ,导导数及其 应应用,函数模型等新增内容,在近年高 考中所占的分量已经经逐步增加。 04-0年导数的考点比较 年份考分考查点 极限运算 函数的连续性 导数的几何意义,利用导数求斜率 利用导数研究函数的单调性 利用导数研究函数的单调性和极值 极限运算 利用导数研究函数的单调性和极值 04-0年概率统计考点比较 年份考分考查点 独立事件同时发生的概率; 互斥事件有一个发生的概率。 相互独立事件的概率; 离散型随机变量的分布列。数学期望。 独立事件同时发生的概率; 离散型随机变量的分布列。数学期望。 04-0年空间向量考点比较 年份考分考查点 异面直线所成的角; 平面的法向量; 空间直角坐标系; 空间向量的坐标表示; 空间直角坐标系; 空间向量的坐标表示; 异面直线所成的角。 04-0年解析几何考点比较 年份考分考 查 点 坐标法的实际应 用, 椭圆和直线的关系,求直线方程 动态几何,求动点的轨迹方程, 折痕所在的直线方程,几何最值 向量与函数的综合应用, 求动点的轨迹方程 04-0年函数创新考点比较 年份考分考 查 点 闭区间上连续函数零点的存在性 问题,新情境。 抽象函数奇偶性,周期性的判断, 函数零点的个数, 满足李普希茨条件的函数及其进一 步的研究 04-0年数列考点比较 年份考分考 查 点 数列求和与极限 数列通项,等比数列求和,错位 相减法 等差数列,等比数列及求和,自 然数列平方和,错位相减 能力立意,考查素质 n近年高考数学科命题,按照“考查基础知识的 同时,注重考查能力”的原则,确立以能力立 意命题的指导思想,将知识、能力和素质融为 一体,全面检测考生的数学素养. n数学科是高考的必考科目,它要发挥数学作为 主要基础学科的作用,要考查中学的基础知识 、基本技能的掌握程度,要考查对数学思想方 法和数学本质的理解水平,要考查进入高等学 校继续学习的潜能。 对知识的三个层次的要求 n了解:要求对所列知识的含义有初步的、感性 的认识,知道这一知识内容是什么,按照一定 的程序和步骤照样模仿,并能识别和认识. n理解:对知识内容有较深刻的理性认识,知道 知识间的逻辑关系,能够作正确的描述说明, 用数学语言表达,利用所学的知识内容对有关 问题作比较、判别、讨论,能利用所学知识解 决简单问题. n掌握:对所列的知识能够推导证明,利用所学 知识对问题能够进行分析、研究、讨论,并且 加以解决. 重点考查五大能力 n空间想像能力:能根据条件作出正确的图形, 根据图形想像出直观形象;能正确地分析出图 形中基本元素及其相互关系;能对图形进行分 解、组合;会运用图形与图表等手段形象地揭 示问题的本质. n抽象概括能力:抽象是指舍弃事物非本质的属 性,揭示其本质的属性;概括是指把仅仅属于 某一类对象的共同属性区分出来的思维过程. 抽象和概括是相互联系的,没有抽象就不可能 有概括,而概括必须在抽象的基础上得出某一 观点或作出某项结论. 重点考查五大能力() n推理论证能力:推理既包括演绎推理,也包括 合情推理.论证方法既包括按形式划分的演绎 法和归纳法,也包括按思考方法划分的直接证 法和间接证法。 n运算求解能力:会根据法则、公式进行正确运 算、变形和数据处理,能根据问题的条件, 寻找与设计合理、简捷的运算途径;能根据 要求对数据进行估计和近似计算. n数据处理能力:会收集数据、整理数据、分析 数据,能从大量数据中抽取对研究问题有用的 信息,并作出判断. 从一条06高考题谈起 n在德国不来梅举行的第48届世乒赛期间,某商 店橱窗里用同样的乒乓球堆成若干堆“正三棱锥 ”形的展品,其中第1堆只有1层,就一个球;第 2,3,4堆最底层(第一层)分别按图4所示方式 固定摆放,从第二层开始,每层的小球自然垒 放在下一层之上,第堆第层就放一个乒乓球, 以表示第堆的乒乓球总数,则; n(答案用n表示). 乒乓球堆成 “正三棱锥”形式 图4 解此题需要多少种能力? n1 n134 n13610 n1361020 n计算能力 n空间想象力 n归纳概括能力 n符号表示能力 n转化变形能力 n阅读理解能力 n,等等 隐性检查应用意识 n能综合应用所学数学知识、思想和方法解决问 题,包括解决在相关学科、生产、生活中简单 的数学问题; n理解对问题陈述的材料,对信息资料进行归纳 、整理和分类,将实际问题抽象为数学问题, 建立数学模型;应用相关的数学方法解决问题 并加以验证,并能用数学语言正确地表达和说 明. n能依据现实的生活背景,提炼相关的数量关系 ,构造数学模型,将现实问题转化为数学问题 ,并加以解决. 隐性检查创新意识 n能发现问题、提出问题,综合与灵活地应用所 学的数学知识、思想方法,选择有效的方法和 手段分析信息,进行独立的思考、探索和研究 ,提出解决问题的思路,创造性地解决问题. n创新意识是理性思维的高层次表现.对数学问题 的“观察、猜测、抽象、概括、证明”,是发现 问题和解决问题的重要途径,对数学知识的迁 移、组合、融会的程度越高,显示出的创新意 识也就越强. 提倡思考,鼓励探索 n根据新课程的精神,在近年历次高考数学试题 中,加强了对探索性、实践性、操作性、开放 性问题的考查,这些问题也成为历年高考数学 试题的难点。 n然而,近年历次高考数学试题中的探索性问题 ,考生的得分率都较低,说明这种能力不是短 时间就能够突击培养得了的。必须长期培养, 贯彻在高中数学教学过程的始终。 0106年高考数学探索性问题 得分情况 年份探索性问题题 次 探索形式得分率 01第(21)题剪纸拼图,比较体积0.019 02第(11)题弹射质点运动规 律0.2 03第(21)题运动图 形的定值问题0.038 04第(21)题运用新定理,探索函数点的存 在性 0.056 05第(20)题折纸,探索折痕的长度最大值0.012 06第(21)题根据函数类的定义,探索该类 函 数的性质 0.015 重视对视对 个性品质质的考查查 n具有一定的数学视野,认识数学的科学价值和 人文价值,崇尚数学的理性精神,形成审慎的 思维习惯 . n克服紧张情绪,以平和的心态参加考试,合理 支配考试时间,以实事求是的科学态度解答试 题,树立战胜困难的信心,体现锲而不舍的精 神。 n在诸多方面中,知识、能力是考查的重点。 加强对自我反馈意识的训练的 指导 n精审题意,严把条件; n多方联想,贯通思路; n言必有据,清晰表达; n全面思考,思维慎密; n每分必争,步步为营; n适时反思,有错必纠 精审题意,严把条件 n全面收集信息

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论