



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版选修二 离散型随机变量的均值 教案 一、教学目标:1、知识与技能:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望。2、过程与方法:理解公式“E(a+b)=aE+b”,以及“若B(n,p),则E=np”.能熟练地应用它们求相应的离散型随机变量的均值或期望。3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。 二、教学重点:离散型随机变量的均值或期望的概念。教学难点:根据离散型随机变量的分布列求出均值或期望。三、教学方法:讨论交流,探析归纳四、教学过程(一)、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母、等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量3连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出若是随机变量,是常数,则也是随机变量并且不改变其属性(离散型、连续型) 5. 分布列:设离散型随机变量可能取得值为x1,x2,x3,取每一个值xi(i=1,2,)的概率为,则称表x1x2xiPP1P2Pi为随机变量的概率分布,简称的分布列 6. 分布列的两个性质: Pi0,i1,2,; P1+P2+=1(二)、探析新课:1、数学期望: 一般地,若离散型随机变量的概率分布为x1x2xnPp1p2pn则称 为的数学期望,简称期望2、数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平。3、平均数、均值:一般地,在有限取值离散型随机变量的概率分布中,令,则有,所以的数学期望又称为平均数、均值。4、期望的一个性质:若(a、b是常数),是随机变量,则也是随机变量,它们的分布列为x1x2xnPp1p2pn于是),由此,我们得到了期望的一个性质:5、若B(n,p),则E=np 证明如下:,012kn又 , 故若B(n,p),则np6.例题探析:例1. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分的期望解:因为,所以例2. 随机抛掷一枚骰子,求所得骰子点数的期望解:,=3.5例3. 一次英语单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望 解:设学生甲和乙在这次英语测验中正确答案的选择题个数分别是,则 B(20,0.9),。由于答对每题得5分,学生甲和乙在这次英语测验中的成绩分别是5和5所以,他们在测验中的成绩的期望分别是:。例4随机的抛掷一个骰子,求所得骰子的点数的数学期望123456P解:抛掷骰子所得点数的概率分布为所以123456(123456)3.5抛掷骰子所得点数的数学期望,就是的所有可能取值的平均值(三)、课堂小结:(1)离散型随机变量的期望,反映了随机变量取值的平均水平;(2)求离散型随机变量的期望的基本步骤:理解的意义,写出可能取的全部值;求取各个值的概率,写出分布列;根据分布列,由期望的定义求出E。公式E(a+b)= aE+b,以及服从二项分布的随机变量的期望E=np。(四)、课堂练习:1、课本P59页练习A4;B5;C4.5;D4.752、 篮球运动员在比赛中每次罚球命中的1分,罚不中得0分已知某运动员罚球命中的概率为0.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB 28374-2025电缆防火涂料
- 农村养殖场废弃物处理技术合作协议
- 如何识别和分析企业云服务提供商的性能
- 养殖场环保达标合作协议
- 实验室安全规定
- 那场风雨过后的景色描写作文(15篇)
- 动物保护的重要性议论文并附加实例说明(11篇)
- 学生在职实习表现及成果证明(7篇)
- 2025年滑雪教练职业技能测试卷:2025年滑雪教练冰雪运动项目赛事运营与管理试题
- 2025年电子商务师(初级)职业技能鉴定试卷:电子商务平台数据分析与客户价值评估试题
- 破茧成蝶:大学生职业适应性的现状洞察与培育策略
- 《STP战略规划与应用》课件
- 建筑施工安全协议范本5篇
- 【中学】【主题班会】护红色根脉 圆复兴梦想
- 2025年特种设备作业人员气瓶充装P证考试题库
- 2025-2030中国共享按摩椅行业市场深度调研及投资前景与投资策略研究报告
- 《智能驾驶辅助系统ADAS》课件
- 2024年自然资源部所属单位招聘笔试真题
- 江西吉安市吉水县吉瑞招商运营有限公司招聘笔试题库2025
- 自然照护理念体位管理
- 《关税政策解析》课件
评论
0/150
提交评论