沈北新区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
沈北新区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
沈北新区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
沈北新区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
沈北新区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

沈北新区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知函数f(x)=是R上的增函数,则a的取值范围是( )A3a0B3a2Ca2Da02 运行如图所示的程序框图,输出的所有实数对(x,y)所对应的点都在某函数图象上,则该函数的解析式为( )Ay=x+2By=Cy=3xDy=3x33 集合,则,的关系( )A B C D4 已知xR,命题“若x20,则x0”的逆命题、否命题和逆否命题中,正确命题的个数是( )A0B1C2D35 在ABC中,a2=b2+c2+bc,则A等于( )A120B60C45D306 学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( )A20种B24种C26种D30种7 已知ACBC,AC=BC,D满足=t+(1t),若ACD=60,则t的值为( )ABC1D8 若a=ln2,b=5,c=xdx,则a,b,c的大小关系( )AabcBBbacCCbcaDcba9 已知函数,关于的方程()有3个相异的实数根,则的取值范围是( )A B C D【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力10设f(x)=asin(x+)+bcos(x+)+4,其中a,b,均为非零的常数,f(1988)=3,则f(2008)的值为( )A1B3C5D不确定11复数i1(i是虚数单位)的虚部是( )A1B1CiDi12如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是()A BC D二、填空题13下列说法中,正确的是(填序号)若集合A=x|kx2+4x+4=0中只有一个元素,则k=1;在同一平面直角坐标系中,y=2x与y=2x的图象关于y轴对称;y=()x是增函数;定义在R上的奇函数f(x)有f(x)f(x)014函数f(x)=log(x22x3)的单调递增区间为15椭圆的两焦点为F1,F2,一直线过F1交椭圆于P、Q,则PQF2的周长为16()0+(2)3 =17【常熟中学2018届高三10月阶段性抽测(一)】已知函数,若曲线(为自然对数的底数)上存在点使得,则实数的取值范围为_.18复数z=(i虚数单位)在复平面上对应的点到原点的距离为三、解答题19在直角坐标系xOy中,过点P(2,1)的直线l的倾斜角为45以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为sin2=4cos,直线l和曲线C的交点为A,B(1)求曲线C的直角坐标方程; (2)求|PA|PB| 20某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元)21(本小题满分12分)设f(x)x2axa2ln x(a0)(1)讨论f(x)的单调性;(2)是否存在a0,使f(x)e1,e2对于x1,e时恒成立,若存在求出a的值,若不存在说明理由22(本题满分14分)在中,角,所对的边分别为,已知(1)求角的大小; (2)若,求的取值范围【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力23(1)求证:(2),若 24如图所示,在正方体中(1)求与所成角的大小;(2)若、分别为、的中点,求与所成角的大小沈北新区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:函数是R上的增函数设g(x)=x2ax5(x1),h(x)=(x1)由分段函数的性质可知,函数g(x)=x2ax5在(,1单调递增,函数h(x)=在(1,+)单调递增,且g(1)h(1)解可得,3a2故选B2 【答案】 C【解析】解:模拟程序框图的运行过程,得;该程序运行后输出的是实数对(1,3),(2,9),(3,27),(4,81);这组数对对应的点在函数y=3x的图象上故选:C【点评】本题考查了程序框图的应用问题,是基础题目3 【答案】A【解析】试题分析:通过列举可知,所以.考点:两个集合相等、子集14 【答案】C【解析】解:命题“若x20,则x0”的逆命题是“若x0,则x20”,是真命题;否命题是“若x20,则x0”,是真命题;逆否命题是“若x0,则x20”,是假命题;综上,以上3个命题中真命题的个数是2故选:C5 【答案】A【解析】解:根据余弦定理可知cosA=a2=b2+bc+c2,bc=(b2+c2a2)cosA=A=120故选A6 【答案】A【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案;甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;甲班级分配5个名额,有1种不同的分配方案故共有10+6+3+1=20种不同的分配方案,故选:A【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想7 【答案】A【解析】解:如图,根据题意知,D在线段AB上,过D作DEAC,垂足为E,作DFBC,垂足为F;若设AC=BC=a,则由得,CE=ta,CF=(1t)a;根据题意,ACD=60,DCF=30;即;解得故选:A【点评】考查当满足时,便说明D,A,B三点共线,以及向量加法的平行四边形法则,平面向量基本定理,余弦函数的定义8 【答案】C【解析】解: a=ln2lne即,b=5=,c=xdx=,a,b,c的大小关系为:bca故选:C【点评】本题考查了不等式大小的比较,关键是求出它们的取值范围,是基础题9 【答案】D第卷(共90分)10【答案】B【解析】解:f(1988)=asin(1988+)+bcos(1998+)+4=asin+bcos+4=3,asin+bcos=1,故f(2008)=asin(2008+)+bcos(2008+)+4=asin+bcos+4=1+4=3,故选:B【点评】本题主要考查利用诱导公式进行化简求值,属于中档题11【答案】A【解析】解:由复数虚部的定义知,i1的虚部是1,故选A【点评】该题考查复数的基本概念,属基础题12【答案】B【解析】【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x是奇函数,故是偶函数。故答案为:B二、填空题13【答案】 【解析】解:若集合A=x|kx2+4x+4=0中只有一个元素,则k=1或k=0,故错误;在同一平面直角坐标系中,y=2x与y=2x的图象关于y轴对称,故正确;y=()x是减函数,故错误;定义在R上的奇函数f(x)有f(x)f(x)0,故正确故答案为:【点评】本题以命题的真假判断与应用为载体,考查了集合,指数函数的,奇函数的图象和性质,难度中档14【答案】(,1) 【解析】解:函数的定义域为x|x3或x1令t=x22x3,则y=因为y=在(0,+)单调递减t=x22x3在(,1)单调递减,在(3,+)单调递增由复合函数的单调性可知函数的单调增区间为(,1)故答案为:(,1)15【答案】20 【解析】解:a=5,由椭圆第一定义可知PQF2的周长=4aPQF2的周长=20,故答案为20【点评】作出草图,结合图形求解事半功倍16【答案】 【解析】解:()0+(2)3=1+(2)2=1+=故答案为:17【答案】【解析】结合函数的解析式:可得:,令y=0,解得:x=0,当x0时,y0,当x0,yy0,则f(f(y0)=f(c)f(y0)=cy0,不满足f(f(y0)=y0同理假设f(y0)=c0,g(x)在(0,e)单调递增,当x=e时取最大值,最大值为,当x0时,a-,a的取值范围.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号而解答本题(2)问时,关键是分离参数k,把所求问题转化为求函数的最小值问题(2)若可导函数f(x)在指定的区间D上单调递增(减),求参数范围问题,可转化为f(x)0(或f(x)0)恒成立问题,从而构建不等式,要注意“”是否可以取到18【答案】 【解析】解:复数z=i(1+i)=1i,复数z=(i虚数单位)在复平面上对应的点(1,1)到原点的距离为:故答案为:【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力三、解答题19【答案】 【解析】(1)sin2=4cos,2sin2=4cos,cos=x,sin=y,曲线C的直角坐标方程为y2=4x (2)直线l过点P(2,1),且倾斜角为45l的参数方程为(t为参数)代入 y2=4x 得t26t14=0设点A,B对应的参数分别t1,t2t1t2=14|PA|PB|=14 20【答案】 【解析】解:(1)投资为x万元,A产品的利润为f(x)万元,B产品的利润为g(x)万元,由题设f(x)=k1x,g(x)=k2,(k1,k20;x0)由图知f(1)=,k1=又g(4)=,k2=从而f(x)=,g(x)=(x0)(2)设A产品投入x万元,则B产品投入10x万元,设企业的利润为y万元y=f(x)+g(10x)=,(0x10),令,(0t)当t=,ymax4,此时x=3.75当A产品投入3.75万元,B产品投入6.25万元时,企业获得最大利润约为4万元【点评】本题考查利用待定系数法求函数的解析式、考查将实际问题的最值问题转化为函数的最值问题解题的关键是换元,利用二次函数的求最值的方法求解21【答案】【解析】解:(1)f(x)x2axa2ln x的定义域为x|x0,f(x)2xa.当a0时,由f(x)0得x,由f(x)0得0x.此时f(x)在(0,)上单调递增,在(,)上单调递减;当a0时,由f(x)0得xa,由f(x)0得0xa,此时f(x)在(0,a)上单调递增,在(a,)上单调递减(2)假设存在满足条件的实数a,x1,e时,f(x)e1,e2,f(1)1ae1,即ae,由(1)知f(x)在(0,a)上单调递增,f(x)在1,e上单调递增,f(e)e2aee2e2,即ae,由可得ae,故存在ae,满足条件 22【答案】(1);(2).【解析】23【答案】 【解析】解:(1),an+1=f(an)=,则,是首项为1,公差为3的等差数列;(2)由(1)得, =3n2,bn的前n项和为,当n2时,bn=SnSn1=2n2n1=2n1,而b1=S1=1,也满足上式,则bn=2n1,=(3n2)2n1,=20+421+722+(3n2)2n1,则2Tn=21+422+723+(3n2)2n,得:Tn=1+321+322+323+32n1(3n2)2n,Tn=(3n5)2n+5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论