让胡路区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
让胡路区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
让胡路区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
让胡路区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
让胡路区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

让胡路区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)=( )Aex+1Bex1Cex+1Dex12 过抛物线焦点的直线与双曲线的一条渐近线平行,并交其抛物线于、两点,若,且,则抛物线方程为( )A B C D【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力3 直线2x+y+7=0的倾斜角为()A锐角B直角C钝角D不存在4 “为真”是“为假”的( )条件A充分不必要 B必要不充分 C充要 D既不充分也不必要5 有以下四个命题:若=,则x=y若lgx有意义,则x0若x=y,则=若xy,则 x2y2则是真命题的序号为( )ABCD6 设等差数列an的前n项和为Sn,已知S4=2,S5=0,则S6=( )A0B1C2D37 “m=1”是“直线(m2)x3my1=0与直线(m+2)x+(m2)y+3=0相互垂直”的( )A必要而不充分条件B充分而不必要条件C充分必要条件D既不充分也不必要条件8 是平面内不共线的两向量,已知,若三点共线,则的值是( )A1 B2 C-1 D-29 圆上的点到直线的距离最大值是( )A B C D10若函数在上单调递增,则实数的取值范围为( )A BC. D11如图所示是一个几何体的三视图,其中正视图是一个正三角形,则这个几何体的表面积是( )ABC +D +112已知一个算法的程序框图如图所示,当输出的结果为时,则输入的值为( )A B C或 D或二、填空题13设为锐角, =(cos,sin),=(1,1)且=,则sin(+)= 14如图,在长方体ABCDA1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥ABB1D1D的体积为cm315已知=1bi,其中a,b是实数,i是虚数单位,则|abi|=16已知是定义在上函数,是的导数,给出结论如下:若,且,则不等式的解集为; 若,则;若,则;若,且,则函数有极小值;若,且,则函数在上递增其中所有正确结论的序号是 17【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数若有三个零点,则实数m的取值范围是_18设O为坐标原点,抛物线C:y2=2px(p0)的准线为l,焦点为F,过F斜率为的直线与抛物线C相交于A,B两点,直线AO与l相交于D,若|AF|BF|,则=三、解答题19(14分)已知函数,其中m,a均为实数(1)求的极值; 3分(2)设,若对任意的,恒成立,求的最小值; 5分(3)设,若对任意给定的,在区间上总存在,使得 成立,求的取值范围 6分20如图,四面体ABCD中,平面ABC平面BCD,AC=AB,CB=CD,DCB=120,点E在BD上,且CE=DE()求证:ABCE;()若AC=CE,求二面角ACDB的余弦值21(本小题满分12分)如图,在四棱锥中,底面是菱形,且点是棱的中点,平面与棱交于点(1)求证:;(2)若,且平面平面,求平面与平面所成的锐二面角的余弦值【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.22(本小题满分10分)选修4-4:坐标系与参数方程:在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系已知直线的极坐标方程为,曲线的极坐标方程为(1)设为参数,若,求直线的参数方程;(2)已知直线与曲线交于,设,且,求实数的值23【徐州市2018届高三上学期期中】已知函数(,是自然对数的底数).(1)若函数在区间上是单调减函数,求实数的取值范围;(2)求函数的极值;(3)设函数图象上任意一点处的切线为,求在轴上的截距的取值范围24已知(+)n展开式中的所有二项式系数和为512,(1)求展开式中的常数项;(2)求展开式中所有项的系数之和让胡路区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】解:函数y=ex的图象关于y轴对称的图象的函数解析式为y=ex,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex的图象关于y轴对称,所以函数f(x)的解析式为y=e(x+1)=ex1即f(x)=ex1故选D2 【答案】C【解析】由已知得双曲线的一条渐近线方程为,设,则,所以,解得或,因为,故,故,所以抛物线方程为3 【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为,则tan=2,即可判断出结论【解答】解:设直线2x+y+7=0的倾斜角为,则tan=2,则为钝角故选:C4 【答案】B【解析】试题分析:因为假真时,真,此时为真,所以,“ 真”不能得“为假”,而“为假”时为真,必有“ 真”,故选B. 考点:1、充分条件与必要条件;2、真值表的应用.5 【答案】A【解析】解:若=,则,则x=y,即对;若lgx有意义,则x0,即对;若x=y0,则=,若x=y0,则不成立,即错;若xy0,则 x2y2,即错故真命题的序号为故选:A6 【答案】D【解析】解:设等差数列an的公差为d,则S4=4a1+d=2,S5=5a1+d=0,联立解得,S6=6a1+d=3故选:D【点评】本题考查等差数列的求和公式,得出数列的首项和公差是解决问题的关键,属基础题7 【答案】B【解析】解:当m=0时,两条直线方程分别化为:2x1=0,2x2y+3=0,此时两条直线不垂直,舍去;当m=2时,两条直线方程分别化为:6y1=0,4x+3=0,此时两条直线相互垂直;当m0,2时,两条直线相互垂直,则=1,解得m=1综上可得:两条直线相互垂直的充要条件是:m=1,2“m=1”是“直线(m2)x3my1=0与直线(m+2)x+(m2)y+3=0相互垂直”的充分不必要条件故选:B【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题8 【答案】B【解析】考点:向量共线定理9 【答案】【解析】试题分析:化简为标准形式,圆上的点到直线的距离的最大值为圆心到直线的距离加半径,半径为1,所以距离的最大值是,故选B.考点:直线与圆的位置关系 110【答案】D【解析】考点:1、导数;2、单调性;3、函数与不等式. 11【答案】D【解析】解:由三视图可知:该几何体是如图所示的三棱锥,其中侧面PAC面ABC,PAC是边长为2的正三角形,ABC是边AC=2,边AC上的高OB=1,PO=为底面上的高于是此几何体的表面积S=SPAC+SABC+2SPAB=2+21+2=+1+故选:D【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状12【答案】【解析】试题分析:程序是分段函数 ,当时,解得,当时,解得,所以输入的是或,故选D.考点:1.分段函数;2.程序框图.11111二、填空题13【答案】:【解析】解:=cossin=,1sin2=,得sin2=,为锐角,cossin=(0,),从而cos2取正值,cos2=,为锐角,sin(+)0,sin(+)=故答案为:14【答案】6 【解析】解:过A作AOBD于O,AO是棱锥的高,所以AO=,所以四棱锥ABB1D1D的体积为V=6故答案为:615【答案】 【解析】解:=1bi,a=(1+i)(1bi)=1+b+(1b)i,解得b=1,a=2|abi|=|2i|=故答案为:【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题16【答案】【解析】解析:构造函数,在上递增, ,错误;构造函数,在上递增,正确;构造函数,当时,错误;由得,即,函数在上递增,在上递减,函数的极小值为,正确;由得,设,则,当时,当时,当时,即,正确17【答案】【解析】18【答案】 【解析】解:O为坐标原点,抛物线C:y2=2px(p0)的准线为l,焦点为F,过F斜率为的直线与抛物线C相交于A,B两点,直线AO与l相交于D,直线AB的方程为y=(x),l的方程为x=,联立,解得A(, P),B(,)直线OA的方程为:y=,联立,解得D(,)|BD|=,|OF|=, =故答案为:【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质三、解答题19【答案】解:(1),令,得x = 1 列表如下:x(-,1)1(1,+)+0-g(x)极大值g(1) = 1,y =的极大值为1,无极小值 3分 (2)当时,在恒成立,在上为增函数 设, 0在恒成立,在上为增函数 设,则等价于,即 设,则u(x)在为减函数在(3,4)上恒成立 恒成立 设,=,x3,4, 0,为减函数在3,4上的最大值为v(3) = 3 - a3 -,的最小值为3 - 8分(3)由(1)知在上的值域为 ,当时,在为减函数,不合题意 当时,由题意知在不单调,所以,即 此时在上递减,在上递增,即,解得 由,得 ,成立 下证存在,使得1取,先证,即证设,则在时恒成立在时为增函数,成立再证1,时,命题成立 综上所述,的取值范围为 14分20【答案】 【解析】解:()证明:BCD中,CB=CD,BCD=120,CDB=30,EC=DE,DCE=30,BCE=90,ECBC,又平面ABC平面BCD,平面ABC与平面BCD的交线为BC,EC平面ABC,ECAB()解:取BC的中点O,BE中点F,连结OA,OF,AC=AB,AOBC,平面ABC平面BCD,平面ABC平面BCD=BC,AO平面BCD,O是BC中点,F是BE中点,OFBC,以O为原点,OB为y轴,OA为z轴,建立空间直角坐标系,设DE=2,则A(0,0,1),B(0,0),C(0,0),D(3,2,0),=(0,1),=(3,0),设平面ACD的法向量为=(x,y,z),则,取x=1,得=(1,3),又平面BCD的法向量=(0,0,1),cos=,二面角ACDB的余弦值为【点评】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用本小题对考生的空间想象能力与运算求解能力有较高要求21【答案】【解析】平面,是平面的一个法向量,22【答案】【解析】【命题意图】本题主要考查抛物线极坐标方程、直线的极坐标方程与参数方程的互化、直线参数方程的几何意义的应用,意在考查逻辑思维能力、等价转化的能力、运算求解能力,以及方程思想、转化思想的应用23【答案】(1)(2)见解析(3)【解析】试题分析:(1)由题意转化为在区间上恒成立,化简可得一次函数恒成立,根据一次函数性质得不等式,解不等式得实数的取值范围;(2)导函数有一个零点,再根据a的正负讨论导函数符号变化规律,确定极值取法(3)先根据导数得切线斜率再根据点斜式得切线方程,即得切线在x轴上的截距,最后根据a的正负以及基本不等式求截距的取值范围试题解析:(1)函数的导函数,则在区间上恒成立,且等号不恒成立,又,所以在区间上恒成立, 记,只需, 即,解得 (2)由,得 ,当时,有;,所以函数在单调递增,单调递减,所以函数在取得极大值,没有极小值当时,有;, 所以函数在单调递减,单调递增,所以函数在取得极小值,没有极大值综上可知: 当时,函数在取得极大值,没有极小值; 当时,函数在取得极小值,没有极大值(3)设切点为,则曲线在点处的切线方程为,当时,切线的方程为,其在轴上的截距不存在当时,令,得切线在轴上的截距为, 当时,当且仅当,即或时取等号; 当时,当且仅当,即或时取等号.所以切线在轴上的截距范围是.点睛:函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论