




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
玉泉区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知三棱锥ABCO,OA、OB、OC两两垂直且长度均为6,长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在BCO内运动(含边界),则MN的中点P的轨迹与三棱锥的面所围成的几何体的体积为()AB或36+C36D或362 若定义在R上的函数f(x)满足f(0)=1,其导函数f(x)满足f(x)k1,则下列结论中一定错误的是( )ABCD3 设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为( )A3a2B6a2C12a2D24a24 半径R的半圆卷成一个圆锥,则它的体积为( )AR3BR3CR3DR35 中,“”是“”的( )A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.6 过点(0,2)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是( )ABCD7 下列命题中错误的是( )A圆柱的轴截面是过母线的截面中面积最大的一个B圆锥的轴截面是所在过顶点的截面中面积最大的一个C圆台的所有平行于底面的截面都是圆面D圆锥所有的轴截面是全等的等腰三角形8 设函数,其中,若存在唯一的整数,使得,则的取值范围是( )A B C D11119 正方体的内切球与外接球的半径之比为( )ABCD10以下四个命题中,真命题的是( )A,B“对任意的,”的否定是“存在,C,函数都不是偶函数D中,“”是“”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力11已知a=,b=20.5,c=0.50.2,则a,b,c三者的大小关系是( )AbcaBbacCabcDcba12设全集U=1,3,5,7,9,集合A=1,|a5|,9,UA=5,7,则实数a的值是( )A2B8C2或8D2或8二、填空题13已知函数f(x)=,则关于函数F(x)=f(f(x)的零点个数,正确的结论是(写出你认为正确的所有结论的序号)k=0时,F(x)恰有一个零点k0时,F(x)恰有2个零点k0时,F(x)恰有3个零点k0时,F(x)恰有4个零点14直线ax2y+2=0与直线x+(a3)y+1=0平行,则实数a的值为 15已知f(x+1)=f(x1),f(x)=f(2x),方程f(x)=0在0,1内只有一个根x=,则f(x)=0在区间0,2016内根的个数16如图是一个正方体的展开图,在原正方体中直线AB与CD的位置关系是17直角坐标P(1,1)的极坐标为(0,0)18【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)lnx (mR)在区间1,e上取得最小值4,则m_三、解答题19在ABC中,D为BC边上的动点,且AD=3,B=(1)若cosADC=,求AB的值;(2)令BAD=,用表示ABD的周长f(),并求当取何值时,周长f()取到最大值?20设集合.(1)若,求实数的值;(2),求实数的取值范围.111121(本小题满分12分)已知椭圆的离心率为,、分别为左、右顶点, 为其右焦点,是椭圆上异于、的动点,且的最小值为-2.(1)求椭圆的标准方程;(2)若过左焦点的直线交椭圆于两点,求的取值范围.22(本小题12分)设是等差数列,是各项都为正数的等比数列,且,.111(1)求,的通项公式;(2)求数列的前项和.23【2017-2018学年度第一学期如皋市高三年级第一次联考】已知二次函数为偶函数且图象经过原点,其导函数的图象过点(1)求函数的解析式;(2)设函数,其中m为常数,求函数的最小值24.已知定义域为R的函数f(x)=是奇函数(1)求a的值;(2)判断f(x)在(,+)上的单调性(直接写出答案,不用证明);(3)若对于任意tR,不等式f(t22t)+f(2t2k)0恒成立,求k的取值范围玉泉区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】【分析】由于长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,故MN的中点P的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可【解答】解:因为长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在BCO内运动(含边界), 有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,则MN的中点P的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或故选D2 【答案】C【解析】解;f(x)=f(x)k1,k1,即k1,当x=时,f()+1k=,即f()1=故f(),所以f(),一定出错,故选:C3 【答案】B【解析】解:根据题意球的半径R满足(2R)2=6a2,所以S球=4R2=6a2故选B4 【答案】A【解析】解:2r=R,所以r=,则h=,所以V=故选A5 【答案】A.【解析】在中,故是充分必要条件,故选A.6 【答案】A【解析】解:若直线斜率不存在,此时x=0与圆有交点,直线斜率存在,设为k,则过P的直线方程为y=kx2,即kxy2=0,若过点(0,2)的直线l与圆x2+y2=1有公共点,则圆心到直线的距离d1,即1,即k230,解得k或k,即且,综上所述,故选:A7 【答案】 B【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah2rh当a=2r时截面面积最大,即轴截面面积最大,故A正确对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为,截面三角形SAB的高为,截面面积S=故截面的最大面积为故B错误对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确故选:B【点评】本题考查了旋转体的结构特征,属于中档题8 【答案】D【解析】考点:函数导数与不等式1【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令将函数变为两个函数,将题意中的“存在唯一整数,使得在直线的下方”,转化为存在唯一的整数,使得在直线的下方.利用导数可求得函数的极值,由此可求得的取值范围. 9 【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,设正方体的棱长为:2a,所以内切球的半径为:a;外接球的直径为2a,半径为: a,所以,正方体的内切球与外接球的半径之比为:故选C10【答案】D11【答案】A【解析】解:a=0.50.5,c=0.50.2,0ac1,b=20.51,bca,故选:A12【答案】D【解析】解:由题意可得3A,|a5|=3,a=2,或a=8,故选 D二、填空题13【答案】 【解析】解:当k=0时,当x0时,f(x)=1,则f(f(x)=f(1)=0,此时有无穷多个零点,故错误;当k0时,()当x0时,f(x)=kx+11,此时f(f(x)=f(kx+1)=,令f(f(x)=0,可得:x=0;()当0x1时,此时f(f(x)=f()=,令f(f(x)=0,可得:x=,满足;()当x1时,此时f(f(x)=f()=k+10,此时无零点综上可得,当k0时,函数有两零点,故正确;当k0时,()当x时,kx+10,此时f(f(x)=f(kx+1)=k(kx+1)+1,令f(f(x)=0,可得:,满足;()当时,kx+10,此时f(f(x)=f(kx+1)=,令f(f(x)=0,可得:x=0,满足;()当0x1时,此时f(f(x)=f()=,令f(f(x)=0,可得:x=,满足;()当x1时,此时f(f(x)=f()=k+1,令f(f(x)=0得:x=1,满足;综上可得:当k0时,函数有4个零点故错误,正确故答案为:【点评】本题考查复合函数的零点问题考查了分类讨论和转化的思想方法,要求比较高,属于难题14【答案】1【解析】【分析】利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a的值【解答】解:直线ax2y+2=0与直线x+(a3)y+1=0平行,解得 a=1故答案为 115【答案】2016 【解析】解:f(x)=f(2x),f(x)的图象关于直线x=1对称,即f(1x)=f(1+x)f(x+1)=f(x1),f(x+2)=f(x),即函数f(x)是周期为2的周期函数,方程f(x)=0在0,1内只有一个根x=,由对称性得,f()=f()=0,函数f(x)在一个周期0,2上有2个零点,即函数f(x)在每两个整数之间都有一个零点,f(x)=0在区间0,2016内根的个数为2016,故答案为:201616【答案】异面 【解析】解:把展开图还原原正方体如图,在原正方体中直线AB与CD的位置关系是异面故答案为:异面17【答案】 【解析】解:=,tan=1,且0,=点P的极坐标为故答案为:18【答案】3e【解析】f(x),令f(x)0,则xm,且当xm时,f(x)m时,f(x)0,f(x)单调递增若m1,即m1时,f(x)minf(1)m1,不可能等于4;若1me,即eme,即me时,f(x)minf(e)1,令14,得m3e,符合题意综上所述,m3e.三、解答题19【答案】 【解析】(本小题满分12分)解:(1),2分(注:先算sinADC给1分),3分,5分(2)BAD=,6由正弦定理有,7分,8分,10分=,11分当,即时f()取到最大值912分【点评】本题主要考查了诱导公式,同角三角函数基本关系式,正弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题20【答案】(1)或;(2)【解析】(2) . 无实根, 解得; 中只含有一个元素,仅有一个实根, 故舍去; 中只含有两个元素,使 两个实根为和, 需要满足方程组无根,故舍去, 综上所述.1111.Com考点:集合的运算及其应用.21【答案】(1);(2).【解析】试题解析:(1)根据题意知,即,则,设,当时,则.椭圆的方程为.1111设,则,.,.综上知,.考点: 1、待定系数法求椭圆的标准方程;2、平面向量的数量积公式、圆锥曲线中的最值问题.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.22【答案】(1);(2).【解析】(2),6分,.8分-得,10分所以.12分考点:等差数列的概念与通项公式,错位相减法求和,等比数列的概念与通项公式.【方法点晴】本题主要考查等差数列和等比数列的通项公式以及数列的求和,通过设的公差为,的公比为,根据等差数列和等比数列的通项公式,联立方程求得和,进而可得,的通项公式;(2)数列的通项公式由等差数列和等比数列对应项相乘构成,需用错位相减法求得前项和.23【答案】(1);(2)【解析】(2)据题意,即若,即,当时,故在上单调递减;当时,故在上单调递减,在上单调递增,故的最小值为若,即,当时,故在上单调递减;当时,故在上单调递增,故的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全国80所名校数学试卷
- 南渝中学初二数学试卷
- 南充拓展活动策划方案招聘(3篇)
- 固废焚烧施工方案(3篇)
- 珠宝引流促销活动方案策划(3篇)
- 私人银行开业活动策划方案(3篇)
- 山坡建筑施工方案(3篇)
- 驾驶校车考试题库及答案
- 北京市门头沟区2023-2024学年八年级下学期第一次月考道德与法制试卷及答案
- 安徽省芜湖市无为市2023-2024学年高一下学期第二次月考化学考题及答案
- 2025人教版(PEP)2024一年级上册英语教学计划
- 2025年高考甘肃卷地理试题解读及答案详解讲评(课件)
- 金融专业面试实战经验分享:金融行业常见面试题解答
- 2025湖南省低空经济发展集团有限公司及下属子公司招聘7人笔试备考试题及答案解析
- 中医医院创建三甲汇报工作大纲
- 2025年注册会计师(CPA)全国统一考试(税法)历年参考题库含答案详解(5套)
- 卫星互联网基础知识培训课件
- 2025年高考化学四川卷试题答案解读及备考指导(精校打印)
- 2025年郑州小升初选拔考试题目及答案
- 2025年押品评估准入考试题库
- 刑法基本原则解读课件
评论
0/150
提交评论