闻喜县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
闻喜县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
闻喜县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
闻喜县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
闻喜县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

闻喜县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=( )A1B2C5D32 已知双曲线(a0,b0)的一条渐近线方程为,则双曲线的离心率为( )ABCD3 如图,在正六边形ABCDEF中,点O为其中心,则下列判断错误的是( )A =BCD4 等比数列an中,a3,a9是方程3x211x+9=0的两个根,则a6=( )A3BCD以上皆非5 设函数,若对任意,都存在,使得,则实数的最大值为( )A B C. D46 若cos()=,则cos(+)的值是( )ABCD7 已知空间四边形,、分别是、的中点,且,则( )A B C D8 将函数(其中)的图象向右平移个单位长度,所得的图象经过点,则的最小值是( )A B C D 9 已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,则f(2)+g(2)=( )A16B16C8D810某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在内的人数分别为( )A20,2 B24,4 C25,2 D25,411若命题“pq”为假,且“q”为假,则( )A“pq”为假Bp假Cp真D不能判断q的真假12已知直线xy+a=0与圆心为C的圆x2+y2+2x4y+7=0相交于A,B两点,且=4,则实数a的值为( )A或B或3C或5D3或5二、填空题13【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数,其中为自然对数的底数,则不等式的解集为_14函数f(x)=ax+4的图象恒过定点P,则P点坐标是15已知定义域为(0,+)的函数f(x)满足:(1)对任意x(0,+),恒有f(2x)=2f(x)成立;(2)当x(1,2时,f(x)=2x给出如下结论:对任意mZ,有f(2m)=0;函数f(x)的值域为0,+);存在nZ,使得f(2n+1)=9;“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在kZ,使得(a,b)(2k,2k+1)”;其中所有正确结论的序号是16已知点A的坐标为(1,0),点B是圆心为C的圆(x1)2+y2=16上一动点,线段AB的垂直平分线交BC与点M,则动点M的轨迹方程为 17如图,在三棱锥中,为等边三角形,则与平面所成角的正弦值为_.【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力18如图,在平行四边形ABCD中,点E在边CD上,若在平行四边形ABCD内部随机取一个点Q,则点Q取自ABE内部的概率是三、解答题19如图,四边形是等腰梯形,四边形 是矩形,平面,其中分别是的中点,是的中点(1)求证: 平面;(2)平面. 20已知椭圆C: =1(a2)上一点P到它的两个焦点F1(左),F2 (右)的距离的和是6(1)求椭圆C的离心率的值;(2)若PF2x轴,且p在y轴上的射影为点Q,求点Q的坐标21(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在岁间,旅游途中导游发现该旅游散团人人都会使用微信,所有团员的年龄结构按分成5组,分别记为,其频率分布直方图如下图所示()根据频率分布直方图,估计该旅游散团团员的平均年龄;()该团导游首先在三组中用分层抽样的方法抽取了名团员负责全团协调,然后从这6名团员中随机选出2名团员为主要协调负责人,求选出的2名团员均来自组的概率22(本小题满分12分)已知()当时,求的单调区间;()设,且有两个极值点,其中,求的最小值【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想和综合分析问题、解决问题的能力23从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,计算得xi=80, yi=20, xiyi=184, xi2=720(1)求家庭的月储蓄对月收入的回归方程;(2)判断月收入与月储蓄之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄24如图,椭圆C1:的离心率为,x轴被曲线C2:y=x2b截得的线段长等于椭圆C1的短轴长C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,()求C1、C2的方程;()记MAB,MDE的面积分别为S1、S2,若,求直线AB的方程闻喜县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:由三次函数的图象可知,x=2函数的极大值,x=1是极小值,即2,1是f(x)=0的两个根,f(x)=ax3+bx2+cx+d,f(x)=3ax2+2bx+c,由f(x)=3ax2+2bx+c=0,得2+(1)=1,12=2,即c=6a,2b=3a,即f(x)=3ax2+2bx+c=3ax23ax6a=3a(x2)(x+1),则=5,故选:C【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力2 【答案】A【解析】解:双曲线的中心在原点,焦点在x轴上,设双曲线的方程为,(a0,b0)由此可得双曲线的渐近线方程为y=x,结合题意一条渐近线方程为y=x,得=,设b=4t,a=3t,则c=5t(t0)该双曲线的离心率是e=故选A【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题3 【答案】D【解析】解:由图可知,但不共线,故,故选D【点评】本题考查平行向量与共线向量、相等向量的意义,属基础题4 【答案】C【解析】解:a3,a9是方程3x211x+9=0的两个根,a3a9=3,又数列an是等比数列,则a62=a3a9=3,即a6=故选C5 【答案】A111.Com【解析】试题分析:设的值域为,因为函数在上的值域为,所以,因此至少要取遍中的每一个数,又,于是,实数需要满足或,解得考点:函数的性质.【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。首先求出,再利用转化思想将命题条件转化为,进而转化为至少要取遍中的每一个数,再利用数形结合思想建立不等式组:或,从而解得6 【答案】B【解析】解:cos()=,cos(+)=cos=cos()=故选:B7 【答案】A【解析】试题分析:取的中点,连接,根据三角形中两边之和大于第三边,两边之差小于第三边,所以,故选A考点:点、线、面之间的距离的计算1【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题8 【答案】D考点:由的部分图象确定其解析式;函数的图象变换9 【答案】B【解析】解:f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)g(x)=x32x2,f(2)g(2)=(2)32(2)2=16即f(2)+g(2)=f(2)g(2)=16故选:B【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力10【答案】C【解析】考点:茎叶图,频率分布直方图11【答案】B【解析】解:命题“pq”为假,且“q”为假,q为真,p为假;则pq为真,故选B【点评】本题考查了复合命题的真假性的判断,属于基础题12【答案】C【解析】解:圆x2+y2+2x4y+7=0,可化为(x+)2+(y2)2=8=4,22cosACB=4cosACB=,ACB=60圆心到直线的距离为,=,a=或5故选:C二、填空题13【答案】【解析】,即函数为奇函数,又恒成立,故函数在上单调递增,不等式可转化为,即,解得:,即不等式的解集为,故答案为.14【答案】(0,5) 【解析】解:y=ax的图象恒过定点(0,1),而f(x)=ax+4的图象是把y=ax的图象向上平移4个单位得到的,函数f(x)=ax+4的图象恒过定点P(0,5),故答案为:(0,5)【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题15【答案】 【解析】解:x(1,2时,f(x)=2xf(2)=0f(1)=f(2)=0f(2x)=2f(x),f(2kx)=2kf(x)f(2m)=f(22m1)=2f(2m1)=2m1f(2)=0,故正确;设x(2,4时,则x(1,2,f(x)=2f()=4x0若x(4,8时,则x(2,4,f(x)=2f()=8x0一般地当x(2m,2m+1),则(1,2,f(x)=2m+1x0,从而f(x)0,+),故正确;由知当x(2m,2m+1),f(x)=2m+1x0,f(2n+1)=2n+12n1=2n1,假设存在n使f(2n+1)=9,即2n1=9,2n=10,nZ,2n=10不成立,故错误;由知当x(2k,2k+1)时,f(x)=2k+1x单调递减,为减函数,若(a,b)(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确故答案为:16【答案】=1【解析】解:由题意得,圆心C(1,0),半径等于4,连接MA,则|MA|=|MB|,|MC|+|MA|=|MC|+|MB|=|BC|=4|AC|=2,故点M的轨迹是:以A、C为焦点的椭圆,2a=4,即有a=2,c=1,b=,椭圆的方程为=1故答案为: =1【点评】本题考查用定义法求点的轨迹方程,考查学生转化问题的能力,属于中档题17【答案】 【解析】18【答案】 【解析】解:由题意ABE的面积是平行四边形ABCD的一半,由几何概型的计算方法,可以得出所求事件的概率为P=,故答案为:【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题三、解答题19【答案】(1)证明见解析;(2)证明见解析【解析】考点:直线与平面平行的判定;直线与平面垂直的判定.20【答案】 【解析】解:(1)根据椭圆的定义得2a=6,a=3;c=;即椭圆的离心率是;(2);x=带入椭圆方程得,y=;所以Q(0,)21【答案】【解析】【命题意图】本题考查频率分布直方图与平均数、分层抽样、古典概型等基础知识,意在考查审读能力、识图能力、获取数据信息的能力22【答案】【解析】()的定义域,当时,令得,或;令得,故的递增区间是和;的递减区间是()由已知得,定义域为,令得,其两根为,且,23【答案】 【解析】解:(1)由题意,n=10, =xi=8, =yi=2,b=0.3,a=20.38=0.4,y=0.3x0.4;(2)b=0.30,y与x之间是正相关;(3)x=7时,y=0.370.4=1.7(千元)24【答案】 【解析】解:()椭圆C1:的离心率为,a2=2b2,令x2b=0可得x=,x轴被曲线C2:y=x2b截得的线段长等于椭圆C1的短轴长,2=2b,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论