




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷崇礼区实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 如果(mR,i表示虚数单位),那么m=( )A1B1C2D02 有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为( )A15,10,25B20,15,15C10,10,30D10,20,203 设函数f(x)是奇函数f(x)(xR)的导函数,f(2)=0,当x0时,xf(x)f(x)0,则使得f(x)0成立的x的取值范围是( )A(,2)(0,2)B(,2)(2,+)C(2,0)(2,+)D(2,0)(0,2)4 抛物线y=8x2的准线方程是( )Ay=By=2Cx=Dy=25 如图,正方体ABCDA1B1C1D1的棱线长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是( )AACBEBEF平面ABCDC三棱锥ABEF的体积为定值D异面直线AE,BF所成的角为定值6 某几何体的三视图如图所示,则该几何体的表面积为( )A8+2B8+8C12+4D16+47 复数z=(mR,i为虚数单位)在复平面上对应的点不可能位于( )A第一象限B第二象限C第三象限D第四象限8 已知直线l1 经过A(3,4),B(8,1)两点,直线l2的倾斜角为135,那么l1与l2( )A垂直B平行C重合D相交但不垂直9 已知向量=(1,3),=(x,2),且,则x=( )ABCD10设数集M=x|mxm+,N=x|nxn,P=x|0x1,且M,N都是集合P的子集,如果把ba叫做集合x|axb的“长度”,那么集合MN的“长度”的最小值是( )ABCD11如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,将线段竖直放置在同一水平线上,则大致的图形是( )ABCD12在ABC中,角A,B,C所对的边分别是a,b,c,若+1=0,则角B的度数是( )A60B120C150D60或120二、填空题13【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系中,直线与函数和均相切(其中为常数),切点分别为和,则的值为_14已知直线l过点P(2,2),且与以A(1,1),B(3,0)为端点的线段AB相交,则直线l的斜率的取值范围是15已知函数f(x)=x3ax2+3x在x1,+)上是增函数,求实数a的取值范围16命题“对任意的xR,x3x2+10”的否定是17已知f(x)=,x0,若f1(x)=f(x),fn+1(x)=f(fn(x),nN+,则f2015(x)的表达式为18下列说法中,正确的是(填序号)若集合A=x|kx2+4x+4=0中只有一个元素,则k=1;在同一平面直角坐标系中,y=2x与y=2x的图象关于y轴对称;y=()x是增函数;定义在R上的奇函数f(x)有f(x)f(x)0三、解答题19啊啊已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,直线l的参数方程为(t为参数),圆C的极坐标方程为p2+2psin(+)+1=r2(r0)()求直线l的普通方程和圆C的直角坐标方程;()若圆C上的点到直线l的最大距离为3,求r值 20(本小题满分10分)选修41:几何证明选讲如图,AB是O的直径,AC是O的切线,BC交O于E,过E的切线与AC交于D.(1)求证:CDDA;(2)若CE1,AB,求DE的长21已知函数f(x)=ax(a0且a1)的图象经过点(2,)(1)求a的值;(2)比较f(2)与f(b2+2)的大小;(3)求函数f(x)=a(x0)的值域22已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0)(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程23某运动员射击一次所得环数X的分布如下:X0678910P00.20.30.30.2现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为(I)求该运动员两次都命中7环的概率;()求的数学期望E24数列an满足a1=,an(,),且tanan+1cosan=1(nN*)()证明数列tan2an是等差数列,并求数列tan2an的前n项和;()求正整数m,使得11sina1sina2sinam=1 崇礼区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:因为,而(mR,i表示虚数单位),所以,m=1故选A【点评】本题考查了复数代数形式的乘除运算,考查了复数相等的概念,两个复数相等,当且仅当实部等于实部,虚部等于虚部,此题是基础题2 【答案】B【解析】解:每个个体被抽到的概率等于=,则高一、高二、高三年级抽取的人数分别为 800=20,600=15,600=15,故选B【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题3 【答案】A【解析】解:设g(x)=,则g(x)的导数为:g(x)=,当x0时总有xf(x)f(x)0成立,即当x0时,g(x)0,当x0时,函数g(x)为减函数,又g(x)=g(x),函数g(x)为定义域上的偶函数,x0时,函数g(x)是增函数,又g(2)=0=g(2),x0时,由f(x)0,得:g(x)g(2),解得:0x2,x0时,由f(x)0,得:g(x)g(2),解得:x2,f(x)0成立的x的取值范围是:(,2)(0,2)故选:A4 【答案】A【解析】解:整理抛物线方程得x2=y,p=抛物线方程开口向下,准线方程是y=,故选:A【点评】本题主要考查抛物线的基本性质解决抛物线的题目时,一定要先判断焦点所在位置5 【答案】 D【解析】解:在正方体中,ACBD,AC平面B1D1DB,BE平面B1D1DB,ACBE,故A正确;平面ABCD平面A1B1C1D1,EF平面A1B1C1D1,EF平面ABCD,故B正确;EF=,BEF的面积为定值EF1=,又AC平面BDD1B1,AO为棱锥ABEF的高,三棱锥ABEF的体积为定值,故C正确;利用图形设异面直线所成的角为,当E与D1重合时sin=,=30;当F与B1重合时tan=,异面直线AE、BF所成的角不是定值,故D错误;故选D6 【答案】D【解析】解:根据三视图得出该几何体是一个斜四棱柱,AA1=2,AB=2,高为,根据三视图得出侧棱长度为=2,该几何体的表面积为2(2+22+22)=16,故选:D【点评】本题考查了空间几何体的三视图,运用求解表面积,关键是恢复几何体的直观图,属于中档题7 【答案】C【解析】解:z=+i,当1+m0且1m0时,有解:1m1;当1+m0且1m0时,有解:m1;当1+m0且1m0时,有解:m1;当1+m0且1m0时,无解;故选:C【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题8 【答案】A【解析】解:由题意可得直线l1的斜率k1=1,又直线l2的倾斜角为135,其斜率k2=tan135=1,显然满足k1k2=1,l1与l2垂直故选A9 【答案】C【解析】解:,3x+2=0,解得x=故选:C【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题10【答案】C【解析】解:集M=x|mxm+,N=x|nxn,P=x|0x1,且M,N都是集合P的子集,根据题意,M的长度为,N的长度为,当集合MN的长度的最小值时,M与N应分别在区间0,1的左右两端,故MN的长度的最小值是=故选:C11【答案】C【解析】根据题意有:A的坐标为:(0,0,0),B的坐标为(11,0,0),C的坐标为(11,7,0),D的坐标为(0,7,0);A1的坐标为:(0,0,12),B1的坐标为(11,0,12),C1的坐标为(11,7,12),D1的坐标为(0,7,12);E的坐标为(4,3,12)(1)l1长度计算所以:l1=|AE|=13。(2)l2长度计算将平面A1B1C1D1沿Z轴正向平移AA1个单位,得到平面A2B2C2D2;显然有:A2的坐标为:(0,0,24),B2的坐标为(11,0,24),C2的坐标为(11,7,24),D2的坐标为(0,7,24);显然平面A2B2C2D2和平面ABCD关于平面A1B1C1D1对称。设AE与的延长线与平面A2B2C2D2相交于:E2(xE2,yE2,24)根据相识三角形易知:xE2=2xE=24=8,yE2=2yE=23=6,即:E2(8,6,24)根据坐标可知,E2在长方形A2B2C2D2内。12【答案】A【解析】解:根据正弦定理有: =,代入已知等式得:+1=0,即1=,整理得:2sinAcosBcosBsinC=sinBcosC,即2sinAcosB=sinBcosC+cosBsinC=sin(B+C),又A+B+C=180,sin(B+C)=sinA,可得2sinAcosB=sinA,sinA0,2cosB=1,即cosB=,则B=60故选:A【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键二、填空题13【答案】【解析】14【答案】,3 【解析】解:直线AP的斜率K=3,直线BP的斜率K=由图象可知,则直线l的斜率的取值范围是,3,故答案为:,3,【点评】本题给出经过定点P的直线l与线段AB有公共点,求l的斜率取值范围着重考查了直线的斜率与倾斜角及其应用的知识,属于中档题15【答案】(,3 【解析】解:f(x)=3x22ax+3,f(x)在1,+)上是增函数,f(x)在1,+)上恒有f(x)0,即3x22ax+30在1,+)上恒成立则必有1且f(1)=2a+60,a3;实数a的取值范围是(,316【答案】存在xR,x3x2+10 【解析】解:因为全称命题的否定是特称命题,所以命题“对任意的xR,x3x2+10”的否定是:存在xR,x3x2+10故答案为:存在xR,x3x2+10【点评】本题考查命题的否定,特称命题与全称命题的否定关系17【答案】 【解析】解:由题意f1(x)=f(x)=f2(x)=f(f1(x)=,f3(x)=f(f2(x)=,fn+1(x)=f(fn(x)=,故f2015(x)=故答案为:18【答案】 【解析】解:若集合A=x|kx2+4x+4=0中只有一个元素,则k=1或k=0,故错误;在同一平面直角坐标系中,y=2x与y=2x的图象关于y轴对称,故正确;y=()x是减函数,故错误;定义在R上的奇函数f(x)有f(x)f(x)0,故正确故答案为:【点评】本题以命题的真假判断与应用为载体,考查了集合,指数函数的,奇函数的图象和性质,难度中档三、解答题19【答案】 【解析】解:()根据直线l的参数方程为(t为参数),消去参数,得x+y=0,直线l的直角坐标方程为x+y=0,圆C的极坐标方程为p2+2psin(+)+1=r2(r0)(x+)2+(y+)2=r2(r0)圆C的直角坐标方程为(x+)2+(y+)2=r2(r0)()圆心C(,),半径为r,(5分)圆心C到直线x+y=0的距离为d=2,又圆C上的点到直线l的最大距离为3,即d+r=3,r=32=1【点评】本题重点考查了曲线的参数方程和普通方程的互化、极坐标方程和直角坐标方程的互化等知识 20【答案】【解析】解:(1)证明:如图,连接AE,AB是O的直径,AC,DE均为O的切线,AECAEB90,DAEDEAB,DADE.C90B90DEADEC,DCDE,CDDA.(2)CA是O的切线,AB是直径,CAB90,由勾股定理得CA2CB2AB2,又CA2CECB,CE1,AB,1CBCB22,即CB2CB20,解得CB2,CA2122,CA.由(1)知DECA,所以DE的长为.21【答案】 【解析】解:(1)f(x)=ax(a0且a1)的图象经过点(2,),a2=,a=(2)f(x)=()x在R上单调递减,又2b2+2,f(2)f(b2+2),(3)x0,x22x1,()1=30f(x)(0,322【答案】 【解析】解:(1)由题意知椭圆的焦点在x轴上,设椭圆的标准方程是椭圆经过点D(2,0),左焦点为,a=2,可得b=1因此,椭圆的标准方程为(2)设点P的坐标是(x0,y0),线段PA的中点为M(x,y),由根据中点坐标公式,可得,整理得,点P(x0,y0)在椭圆上,可得,化简整理得,由此可得线段PA中点M的轨迹方程是【点评】本题给出椭圆满足的条件,求椭圆方程并求与之有关的一个轨迹方程,着重考查了椭圆的标准方程、简单几何性质和轨迹方程的求法等知识点,属于中档题23【答案】 【解析】解:(1)设A=“该运动员两次都命中7环”,则P(A)=0.20.2=0.04(2)依题意在可能取值为:7、8、9、10且P(=7)=0.04,P(=8)=20.20.3+0.32=0.21,P(=9)=20.20.3+20.30.30.32=0.39,P(=10)=20.20.2+20.30.2+20.30.2+0.22=0.36,的分布列为:78910P0.040.210.390.36的期望为E=70.04+80.21+90.39+100.36=9.07【点评】本题考查概率的求法,考查离散型随机变量的数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用24【答案】 【解析】()证明:对任意正整数n,an(,),且tanan+1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 防疫预案考试题库及答案
- 森林运动会课件科学序数
- 2025年影视剧组招聘演员面试模拟题目
- 《机械员》考试题库及完整答案【历真题】
- 2025年粮食购销企业招聘财务人员的笔试技巧与策略
- 2025年老年人健康管理培训考核试题及答案
- 2025年初种心理咨询师实操技能考核模拟题集解析
- 2025年村级红白理事会司仪招聘考试模拟试题及解析
- 2025年轨道交通信号工中级考试备考攻略模拟题及解析
- 2026届山东滕州市第一中学化学高一上期末联考模拟试题含解析
- 幼儿园安全责任书及后勤管理制度
- 《2型糖尿病中医防治指南(2024版)》解读课件
- 剑阁县普安镇污水处理厂扩容建设项目环评报告
- 商务楼宇管理办法
- 肺炎护理试题填空及答案
- 社用手机管理办法
- 心电监护操作常见并发症预防及处理
- 学校食堂各种检查记录表格表册11
- 超市安全生产奖惩制度
- 韩语考试题目及答案
- 新生儿多重耐药菌防控
评论
0/150
提交评论