乌恰县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
乌恰县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
乌恰县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
乌恰县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
乌恰县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

乌恰县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=( )A1B2C5D32 设数列an的前n项和为Sn,若Sn=n2+2n(nN*),则+=( )ABCD3 已知向量=(1,),=(,x)共线,则实数x的值为( )A1BC tan35Dtan354 某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是()AB8CD5 设0ab且a+b=1,则下列四数中最大的是( )Aa2+b2B2abCaD6 如图,为正方体,下面结论: 平面; ; 平面.其中正确结论的个数是( )A B C D 7 已知实数满足不等式组,若目标函数取得最大值时有唯一的最优解,则实数的取值范围是( )A B C D【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.8 设曲线在点处的切线的斜率为,则函数的部分图象可以为( )A B C. D9 已知x0,y0, +=1,不等式x+y2m1恒成立,则m的取值范围( )A(,B(,C(,D(,10已知函数f(x)=,则的值为( )ABC2D311设数集M=x|mxm+,N=x|nxn,P=x|0x1,且M,N都是集合P的子集,如果把ba叫做集合x|axb的“长度”,那么集合MN的“长度”的最小值是( )ABCD12直线的倾斜角为( )A B C D二、填空题13若展开式中的系数为,则_【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想14有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是_元15已知定义域为(0,+)的函数f(x)满足:(1)对任意x(0,+),恒有f(2x)=2f(x)成立;(2)当x(1,2时,f(x)=2x给出如下结论:对任意mZ,有f(2m)=0;函数f(x)的值域为0,+);存在nZ,使得f(2n+1)=9;“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在kZ,使得(a,b)(2k,2k+1)”;其中所有正确结论的序号是16意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,其中从第三个数起,每一个数都等于他前面两个数的和该数列是一个非常美丽、和谐的数列,有很多奇妙的属性比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887人们称该数列an为“斐波那契数列”若把该数列an的每一项除以4所得的余数按相对应的顺序组成新数列bn,在数列bn中第2016项的值是17设,在区间上任取一个实数,曲线在点处的切线斜率为,则随机事件“”的概率为_.18【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数的零点在区间内,则正整数的值为_三、解答题19(本小题满分12分)在等比数列中,(1)求数列的通项公式;(2)设,且为递增数列,若,求证:20如图在长方形ABCD中,是CD的中点,M是线段AB上的点,(1)若M是AB的中点,求证:与共线;(2)在线段AB上是否存在点M,使得与垂直?若不存在请说明理由,若存在请求出M点的位置;(3)若动点P在长方形ABCD上运动,试求的最大值及取得最大值时P点的位置21已知函数f(x)=x3+x(1)判断函数f(x)的奇偶性,并证明你的结论;(2)求证:f(x)是R上的增函数;(3)若f(m+1)+f(2m3)0,求m的取值范围(参考公式:a3b3=(ab)(a2+ab+b2)22.已知定义域为R的函数f(x)=是奇函数(1)求a的值;(2)判断f(x)在(,+)上的单调性(直接写出答案,不用证明);(3)若对于任意tR,不等式f(t22t)+f(2t2k)0恒成立,求k的取值范围23如图,菱形ABCD的边长为2,现将ACD沿对角线AC折起至ACP位置,并使平面PAC平面ABC ()求证:ACPB;()在菱形ABCD中,若ABC=60,求直线AB与平面PBC所成角的正弦值;()求四面体PABC体积的最大值24已知集合A=x|1x3,集合B=x|2mx1m(1)若AB,求实数m的取值范围;(2)若AB=,求实数m的取值范围乌恰县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:由三次函数的图象可知,x=2函数的极大值,x=1是极小值,即2,1是f(x)=0的两个根,f(x)=ax3+bx2+cx+d,f(x)=3ax2+2bx+c,由f(x)=3ax2+2bx+c=0,得2+(1)=1,12=2,即c=6a,2b=3a,即f(x)=3ax2+2bx+c=3ax23ax6a=3a(x2)(x+1),则=5,故选:C【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力2 【答案】D【解析】解:Sn=n2+2n(nN*),当n=1时,a1=S1=3;当n2时,an=SnSn1=(n2+2n)(n1)2+2(n1)=2n+1=,+=+=故选:D【点评】本题考查了递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题3 【答案】B【解析】解:向量=(1,),=(,x)共线,x=,故选:B【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题4 【答案】C【解析】【分析】通过三视图分析出几何体的图形,利用三视图中的数据求出四个面的面积中的最大值【解答】解:由题意可知,几何体的底面是边长为4的正三角形,棱锥的高为4,并且高为侧棱垂直底面三角形的一个顶点的三棱锥,两个垂直底面的侧面面积相等为:8,底面面积为: =4,另一个侧面的面积为: =4,四个面中面积的最大值为4;故选C5 【答案】A【解析】解:0ab且a+b=12b12aba=a(2b1)0,即2aba又a2+b22ab=(ab)20a2+b22ab最大的一个数为a2+b2故选A6 【答案】【解析】考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直.7 【答案】C【解析】画出可行域如图所示,要使目标函数取得最大值时有唯一的最优解,则需直线过点时截距最大,即最大,此时即可.8 【答案】A 【解析】试题分析:,为奇函数,排除B,D,令时,故选A. 1考点:1、函数的图象及性质;2、选择题“特殊值”法.9 【答案】D【解析】解:x0,y0, +=1,不等式x+y2m1恒成立,所以(x+y)(+)=10+10=16,当且仅当时等号成立,所以2m116,解得m;故m的取值范围是(;故选D10【答案】A【解析】解:函数f(x)=,f()=2,=f(2)=32=故选:A11【答案】C【解析】解:集M=x|mxm+,N=x|nxn,P=x|0x1,且M,N都是集合P的子集,根据题意,M的长度为,N的长度为,当集合MN的长度的最小值时,M与N应分别在区间0,1的左右两端,故MN的长度的最小值是=故选:C12【答案】C【解析】试题分析:由直线,可得直线的斜率为,即,故选C.1考点:直线的斜率与倾斜角.二、填空题13【答案】【解析】由题意,得,即,所以14【答案】1464【解析】【知识点】函数模型及其应用【试题解析】显然,面积大的房间用费用低的涂料,所以房间A用涂料1,房间B用涂料3,房间C用涂料2,即最低的涂料总费用是元。故答案为:146415【答案】 【解析】解:x(1,2时,f(x)=2xf(2)=0f(1)=f(2)=0f(2x)=2f(x),f(2kx)=2kf(x)f(2m)=f(22m1)=2f(2m1)=2m1f(2)=0,故正确;设x(2,4时,则x(1,2,f(x)=2f()=4x0若x(4,8时,则x(2,4,f(x)=2f()=8x0一般地当x(2m,2m+1),则(1,2,f(x)=2m+1x0,从而f(x)0,+),故正确;由知当x(2m,2m+1),f(x)=2m+1x0,f(2n+1)=2n+12n1=2n1,假设存在n使f(2n+1)=9,即2n1=9,2n=10,nZ,2n=10不成立,故错误;由知当x(2k,2k+1)时,f(x)=2k+1x单调递减,为减函数,若(a,b)(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确故答案为:16【答案】0 【解析】解:1,1,2,3,5,8,13,除以4所得的余数分别为1,1,2,3,1,0,;1,1,2,3,1,0,即新数列bn是周期为6的周期数列,b2016=b3366=b6=0,故答案为:0【点评】本题主要考查数列的应用,考查数列为周期数性,属于中档题17【答案】【解析】解析:本题考查几何概率的计算与切线斜率的计算,由得,随机事件“”的概率为18【答案】2【解析】三、解答题19【答案】(1);(2)证明见解析.【解析】试题分析:(1)将化为,联立方程组,求出,可得;(2)由于为递增数列,所以取,化简得,其前项和为.考点:数列与裂项求和法120【答案】 【解析】(1)证明:如图,以AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,当M是AB的中点时,A(0,0),N(1,1),C(2,1),M(1,0),由,可得与共线;(2)解:假设线段AB上是否存在点M,使得与垂直,设M(t,0)(0t2),则B(2,0),D(0,1),M(t,0),由=2(t2)1=0,解得t=,线段AB上存在点,使得与垂直;(3)解:由图看出,当P在线段BC上时,在上的投影最大,则有最大值为4【点评】本题考查平面向量的数量积运算,考查了向量在向量方向上的投影,体现了数形结合的解题思想方法,是中档题21【答案】 【解析】解:(1)f(x)是R上的奇函数证明:f(x)=x3x=(x3+x)=f(x),f(x)是R上的奇函数(2)设R上任意实数x1、x2满足x1x2,x1x20,f(x1)f(x2)=(x1x2)+(x1)3(x2)3=(x1x2)(x1)2+(x2)2+x1x2+1=(x1x2)(x1+x2)2+x22+10恒成立,因此得到函数f(x)是R上的增函数(3)f(m+1)+f(2m3)0,可化为f(m+1)f(2m3),f(x)是R上的奇函数,f(2m3)=f(32m),不等式进一步可化为f(m+1)f(32m),函数f(x)是R上的增函数,m+132m,22【答案】 【解析】解:(1)因为f(x)为R上的奇函数所以f(0)=0即=0,a=1 (2)f(x)=1+,在(,+)上单调递减(3)f(t22t)+f(2t2k)0f(t22t)f(2t2k)=f(2t2+k),又f(x)=在(,+)上单调递减,t22t2t2+k,即3t22tk0恒成立,=4+12k0,k(利用分离参数也可)23【答案】 【解析】解:()证明:取AC中点O,连接PO,BO,由于四边形ABCD为菱形,PA=PC,BA=BC,POAC,BOAC,又POBO=O,AC平面POB,又PB平面POB,ACPB()平面PAC平面ABC,平面PAC平面ABC=AC,PO平面PAC,POAC,PO面ABC,OB,OC,OP两两垂直,故以O为原点,以方向分别为x,y,z轴正方向建立空间直角坐标系,ABC=60,菱形ABCD的边长为2,设平面PBC的法向量,直线AB与平面PBC成角为,取x=1,则,于是,直线AB与平面PBC成角的正弦值为()法一:设ABC=APC=,(0,),又PO平面ABC, =(),当且仅当,即时取等号,四面体PABC体积的最大值为法二:设ABC=APC=,(0,),又PO平面ABC,=(),设,则,且0t1,当时,VPABC0,当时,VPABC0,当时,VPABC取得最大值,四面体PABC体积的最大值为法三:设PO=x,则BO=x,(0x2)又PO平面ABC,当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论