鄢陵县高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
鄢陵县高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
鄢陵县高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
鄢陵县高中2018-2019学年上学期高二数学12月月考试题含解析_第4页
鄢陵县高中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

鄢陵县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 数列1,的前100项的和等于( )ABCD2 阅读右图所示的程序框图,若,则输出的的值等于( )A28 B36 C45 D1203 设函数f(x)在x0处可导,则等于( )Af(x0)Bf(x0)Cf(x0)Df(x0)4 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )ABCD5 直线:(为参数)与圆:(为参数)的位置关系是()A相离 B相切 C相交且过圆心 D相交但不过圆心6 已知双曲线的左、右焦点分别为,过的直线交双曲线于两点且,若,则双曲线离心率的取值范围为( ).A. B. C. D. 第卷(非选择题,共100分)7 若集合A1,1,B0,2,则集合z|zxy,xA,yB中的元素的个数为()A5B4C3D28 在中,那么一定是( )A锐角三角形 B直角三角形 C等腰三角形 D等腰三角形或直角三角形9 若实数x,y满足不等式组则2x+4y的最小值是( )A6B6C4D210已知函数f(x)=x(1+a|x|)设关于x的不等式f(x+a)f(x)的解集为A,若,则实数a的取值范围是( )ABCD11在下列区间中,函数f(x)=()xx的零点所在的区间为( )A(0,1)B(1,2)C(2,3 )D(3,4)12给出下列各函数值:sin100;cos(100);tan(100);其中符号为负的是( )ABCD二、填空题13设满足约束条件,则的最大值是_14如图,在三棱锥中,为等边三角形,则与平面所成角的正弦值为_.【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力151785与840的最大约数为16【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系中,直线与函数和均相切(其中为常数),切点分别为和,则的值为_17有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是_元18已知f(x)=,则f()+f()等于三、解答题19(本小题满分12分)如图长方体ABCDA1B1C1D1中,AB16,BC10,AA18,点E,F分别在A1B1,D1C1上,A1E4,D1F8,过点E,F,C的平面与长方体的面相交,交线围成一个四边形(1)在图中画出这个四边形(不必说明画法和理由);(2)求平面将长方体分成的两部分体积之比20已知函数()求曲线在点处的切线方程;()设,若函数在上(这里)恰有两个不同的零点,求实数的取值范围21如图,O的半径为6,线段AB与相交于点C、D,AC=4,BOD=A,OB与O相交于点(1)求BD长;(2)当CEOD时,求证:AO=AD 22【南京市2018届高三数学上学期期初学情调研】已知函数f(x)2x33(a+1)x26ax,aR()曲线yf(x)在x0处的切线的斜率为3,求a的值;()若对于任意x(0,+),f(x)f(x)12lnx恒成立,求a的取值范围;()若a1,设函数f(x)在区间1,2上的最大值、最小值分别为M(a)、m(a),记h(a)M(a)m(a),求h(a)的最小值23已知抛物线C:x2=2py(p0),抛物线上一点Q(m,)到焦点的距离为1()求抛物线C的方程()设过点M(0,2)的直线l与抛物线C交于A,B两点,且A点的横坐标为n(nN*)()记AOB的面积为f(n),求f(n)的表达式()探究是否存在不同的点A,使对应不同的AOB的面积相等?若存在,求点A点的坐标;若不存在,请说明理由24在等比数列an中,a3=12,前3项和S3=9,求公比q鄢陵县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:=1故选A2 【答案】C 【解析】解析:本题考查程序框图中的循环结构,当时,选C3 【答案】C【解析】解: =f(x0),故选C4 【答案】A【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D不正确;中间的棱在侧视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故B不正确故A选项正确故选:A【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键5 【答案】D【解析】【知识点】直线与圆的位置关系参数和普通方程互化【试题解析】将参数方程化普通方程为:直线:圆:圆心(2,1),半径2圆心到直线的距离为:,所以直线与圆相交。又圆心不在直线上,所以直线不过圆心。故答案为:D6 【答案】C 【解析】如图,由双曲线的定义知,两式相加得 ,又, , , ,在中,将代入得 ,化简得: ,令,易知在上单调递减,故 ,故答案 选C.7 【答案】C【解析】由已知,得z|zxy,xA,yB1,1,3,所以集合z|zxy,xA,yB中的元素的个数为3.8 【答案】D【解析】试题分析:在中,化简得,解得,即,所以或,即或,所以三角形为等腰三角形或直角三角形,故选D考点:三角形形状的判定【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出,从而得到或是试题的一个难点,属于中档试题9 【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=x+,平移直线y=x+,由图象可知当直线y=x+经过点C时,直线y=x+的截距最小,此时z最小,由,解得,即C(3,3),此时z=2x+4y=23+4(3)=612=6故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键10【答案】 A【解析】解:取a=时,f(x)=x|x|+x,f(x+a)f(x),(x)|x|+1x|x|,(1)x0时,解得x0;(2)0x时,解得0;(3)x时,解得,综上知,a=时,A=(,),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,f(x+a)f(x),(x+1)|x+1|+1x|x|,(1)x1时,解得x0,矛盾;(2)1x0,解得x0,矛盾;(3)x0时,解得x1,矛盾;综上,a=1,A=,不合题意,排除C,故选A【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用11【答案】A【解析】解:函数f(x)=()xx,可得f(0)=10,f(1)=0f(2)=0,函数的零点在(0,1)故选:A12【答案】B【解析】解:sin1000,cos(100)=cos1000,tan(100)=tan1000,sin0,cos=1,tan0,0,其中符号为负的是,故选:B【点评】本题主要考查三角函数值的符号的判断,判断角所在的象限是解决本题的关键,比较基础二、填空题13【答案】【解析】试题分析:画出可行域如下图所示,由图可知目标函数在点处取得最大值为.考点:线性规划14【答案】 【解析】15【答案】105 【解析】解:1785=8402+105,840=1058+0840与1785的最大公约数是105故答案为10516【答案】【解析】17【答案】1464【解析】【知识点】函数模型及其应用【试题解析】显然,面积大的房间用费用低的涂料,所以房间A用涂料1,房间B用涂料3,房间C用涂料2,即最低的涂料总费用是元。故答案为:146418【答案】4 【解析】解:由分段函数可知f()=2=f()=f(+1)=f()=f()=f()=2=,f()+f()=+故答案为:4三、解答题19【答案】【解析】解:(1)交线围成的四边形EFCG(如图所示)(2)平面A1B1C1D1平面ABCD,平面A1B1C1D1EF,平面ABCDGC,EFGC,同理EGFC.四边形EFCG为平行四边形,过E作EMD1F,垂足为M,EMBC10,A1E4,D1F8,MF4.GCEF,GB4(事实上RtEFMRtCGB)过C1作C1HFE交EB1于H,连接GH,则四边形EHC1F为平行四边形,由题意知,B1HEB1EH1284GB.平面将长方体分成的右边部分由三棱柱EHGFC1C与三棱柱HB1C1GBC两部分组成其体积为V2V三棱柱EHGFC1CV三棱柱HB1C1GBCSFC1CB1C1SGBCBB188104108480,平面将长方体分成的左边部分的体积V1V长方体V216108480800.,其体积比为(也可以)20【答案】【解析】【知识点】利用导数求最值和极值利用导数研究函数的单调性导数的概念和几何意义【试题解析】()函数定义域为,又,所求切线方程为,即()函数在上恰有两个不同的零点,等价于在上恰有两个不同的实根等价于在上恰有两个不同的实根,令则当时,在递减;当时,在递增故,又,即21【答案】 【解析】解:(1)OC=OD,OCD=ODC,OAC=ODBBOD=A,OBDAOC,OC=OD=6,AC=4,BD=9(2)证明:OC=OE,CEODCOD=BOD=AAOD=180AODC=180CODOCD=ADOAD=AO 【点评】本题考查三角形相似,角的求法,考查推理与证明,距离的求法 22【答案】(1)a(2)(,1(3)【解析】(2)f(x)f(x)6(a1)x212lnx对任意x(0,+)恒成立,所以(a1)令g(x),x0,则g(x)令g(x)0,解得x当x(0,)时,g(x)0,所以g(x)在(0,)上单调递增;当x(,)时,g(x)0,所以g(x)在(,)上单调递减所以g(x)maxg(),所以(a1),即a1,所以a的取值范围为(,1(3)因为f(x)2x33(a1)x26ax,所以f (x)6x26(a1)x6a6(x1)(xa),f(1)3a1,f(2)4令f (x)0,则x1或a f(1)3a1,f(2)4当a2时,当x(1,a)时,f (x)0,所以f(x)在(1,a)上单调递减;当x(a,2)时,f (x)0,所以f(x)在(a,2)上单调递增又因为f(1)f(2),所以M(a)f(1)3a1,m(a)f(a)a33a2,所以h(a)M(a)m(a)3a1(a33a2)a33a23a1因为h (a)3a26a33(a1)20所以h(a)在(,2)上单调递增,所以当a(,2)时,h(a)h()当a2时,当x(1,2)时,f (x)0,所以f(x)在(1,2)上单调递减,所以M(a)f(1)3a1,m(a)f(2)4,所以h(a)M(a)m(a)3a143a5,所以h(a)在2,)上的最小值为h(2)1综上,h(a)的最小值为点睛:已知函数最值求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数最值取法,根据最值列等量关系,确定参数值或取值范围;(2)利用最值转化为不等式恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围.23【答案】 【解析】解:()依题意得|QF|=yQ+=+=1,解得p=1,抛物线C的方程为x2=2y;()()直线l与抛物线C交于A、B两点,直线l的斜率存在,设A(x1,y1),B(x2,y2),直线l的方程为:y=kx+2,联立方程组,化简得:x22kx4=0,此时=(2k)241(4)=4(k2+4)0,由韦达定理,得:x1+x2=2k,x1x2=4,SAOB=|OM|x1x2|=2=2 (*)又A点横坐标为n,点A坐标为A(n,),又直线过点M(0,2),故k=,将上式代入(*)式,可得:f(n)=2=2=2=n+(nN*);()结论:当A点坐标为(1,)或(4,8)时,对应不同的AOB的面积相等理由如下:设存在不同的点Am(m,),An(n,)(mn,m、nN*),使对应不同

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论