古交市一中2018-2019学年上学期高二数学12月月考试题含解析_第1页
古交市一中2018-2019学年上学期高二数学12月月考试题含解析_第2页
古交市一中2018-2019学年上学期高二数学12月月考试题含解析_第3页
古交市一中2018-2019学年上学期高二数学12月月考试题含解析_第4页
古交市一中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

古交市一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 执行如图所示的程序,若输入的,则输出的所有的值的和为( )A243B363C729D1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力2 下列判断正确的是( )A不是棱柱B是圆台C是棱锥D是棱台3 奇函数满足,且在上是单调递减,则的解集为( )ABC D4 一个四边形的斜二侧直观图是一个底角为45,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( )A2+B1+CD5 已知集合A=0,1,2,则集合B=xy|xA,yA中元素的个数是( )A1B3C5D96 已知向量,(),且,点在圆上,则( )A B C D7 执行右面的程序框图,如果输入的,则输出的属于( ) A. B. C. D.【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用8 抛物线y2=2x的焦点到直线xy=0的距离是( )ABCD9 将n2个正整数1、2、3、n2(n2)任意排成n行n列的数表对于某一个数表,计算某行或某列中的任意两个数a、b(ab)的比值,称这些比值中的最小值为这个数表的“特征值”当n=2时,数表的所有可能的“特征值”的最大值为( )ABC2D310设函数f(x)是奇函数f(x)(xR)的导函数,f(2)=0,当x0时,xf(x)f(x)0,则使得f(x)0成立的x的取值范围是( )A(,2)(0,2)B(,2)(2,+)C(2,0)(2,+)D(2,0)(0,2)11数列1,的前100项的和等于( )ABCD12若函数f(x)是奇函数,且在(0,+)上是增函数,又f(3)=0,则(x2)f(x)0的解集是( )A(3,0)(2,3)B(,3)(0,3)C(,3)(3,+)D(3,0)(2,+)二、填空题13设向量a(1,1),b(0,t),若(2ab)a2,则t_14如图是正方体的平面展开图,则在这个正方体中与平行;与是异面直线;与成角;与是异面直线以上四个命题中,正确命题的序号是 (写出所有你认为正确的命题)15将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最小值是16椭圆的两焦点为F1,F2,一直线过F1交椭圆于P、Q,则PQF2的周长为17一船以每小时12海里的速度向东航行,在A处看到一个灯塔B在北偏东60,行驶4小时后,到达C处,看到这个灯塔B在北偏东15,这时船与灯塔相距为海里18在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是三、解答题19已知函数f(x)=(1)求f(f(2);(2)画出函数f(x)的图象,根据图象写出函数的单调增区间并求出函数f(x)在区间(4,0)上的值域20在极坐标系下,已知圆O:=cos+sin和直线l:(1)求圆O和直线l的直角坐标方程;(2)当(0,)时,求直线l与圆O公共点的极坐标21己知函数f(x)=lnxax+1(a0)(1)试探究函数f(x)的零点个数;(2)若f(x)的图象与x轴交于A(x1,0)B(x2,0)(x1x2)两点,AB中点为C(x0,0),设函数f(x)的导函数为f(x),求证:f(x0)0 22已知,且(1)求sin,cos的值;(2)若,求sin的值23已知正项数列an的前n项的和为Sn,满足4Sn=(an+1)2()求数列an通项公式;()设数列bn满足bn=(nN*),求证:b1+b2+bn24某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰 好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望古交市一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】当时,是整数;当时,是整数;依次类推可知当时,是整数,则由,得,所以输出的所有的值为3,9,27,81,243,729,其和为1092,故选D2 【答案】C【解析】解:是底面为梯形的棱柱;的两个底面不平行,不是圆台;是四棱锥;不是由棱锥截来的,故选:C3 【答案】B【解析】试题分析:由,即整式的值与函数的值符号相反,当时,;当时,结合图象即得考点:1、函数的单调性;2、函数的奇偶性;3、不等式.4 【答案】A【解析】解:四边形的斜二侧直观图是一个底角为45,腰和上底的长均为1的等腰梯形,原四边形为直角梯形,且CD=CD=1,AB=OB=,高AD=20D=2,直角梯形ABCD的面积为,故选:A5 【答案】C【解析】解:A=0,1,2,B=xy|xA,yA,当x=0,y分别取0,1,2时,xy的值分别为0,1,2;当x=1,y分别取0,1,2时,xy的值分别为1,0,1;当x=2,y分别取0,1,2时,xy的值分别为2,1,0;B=2,1,0,1,2,集合B=xy|xA,yA中元素的个数是5个故选C6 【答案】A【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.7 【答案】B8 【答案】C【解析】解:抛物线y2=2x的焦点F(,0),由点到直线的距离公式可知:F到直线xy=0的距离d=,故答案选:C9 【答案】B【解析】解:当n=2时,这4个数分别为1、2、3、4,排成了两行两列的数表,当1、2同行或同列时,这个数表的“特征值”为;当1、3同行或同列时,这个数表的特征值分别为或;当1、4同行或同列时,这个数表的“特征值”为或,故这些可能的“特征值”的最大值为故选:B【点评】题考查类比推理和归纳推理,属基础题10【答案】A【解析】解:设g(x)=,则g(x)的导数为:g(x)=,当x0时总有xf(x)f(x)0成立,即当x0时,g(x)0,当x0时,函数g(x)为减函数,又g(x)=g(x),函数g(x)为定义域上的偶函数,x0时,函数g(x)是增函数,又g(2)=0=g(2),x0时,由f(x)0,得:g(x)g(2),解得:0x2,x0时,由f(x)0,得:g(x)g(2),解得:x2,f(x)0成立的x的取值范围是:(,2)(0,2)故选:A11【答案】A【解析】解:=1故选A12【答案】A【解析】解:f(x)是R上的奇函数,且在(0,+)内是增函数,在(,0)内f(x)也是增函数,又f(3)=0,f(3)=0当x(,3)(0,3)时,f(x)0;当x(3,0)(3,+)时,f(x)0;(x2)f(x)0的解集是(3,0)(2,3)故选:A二、填空题13【答案】【解析】(2ab)a(2,2t)(1,1)21(2t)(1)4t2,t2.答案:214【答案】【解析】试题分析:把展开图复原成正方体,如图,由正方体的性质,可知:与是异面直线,所以是错误的;与是平行直线,所以是错误的;从图中连接,由于几何体是正方体,所以三角形为等边三角形,所以所成的角为,所以是正确的;与是异面直线,所以是正确的考点:空间中直线与直线的位置关系15【答案】 【解析】解:设剪成的小正三角形的边长为x,则:S=,(0x1)令3x=t,t(2,3),S=,当且仅当t=即t=2时等号成立;故答案为:16【答案】20 【解析】解:a=5,由椭圆第一定义可知PQF2的周长=4aPQF2的周长=20,故答案为20【点评】作出草图,结合图形求解事半功倍17【答案】24 【解析】解:根据题意,可得出B=7530=45,在ABC中,根据正弦定理得:BC=24海里,则这时船与灯塔的距离为24海里故答案为:2418【答案】 【解析】解:在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥,8个三棱锥的体积为: =剩下的凸多面体的体积是1=故答案为:【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力三、解答题19【答案】 【解析】解:(1)函数f(x)=f(2)=2+2=0,f(f(2)=f(0)=0.3分(2)函数的图象如图:单调增区间为(,1),(0,+)(开区间,闭区间都给分)由图可知:f(4)=2,f(1)=1,函数f(x)在区间(4,0)上的值域(2,112分20【答案】 【解析】解:(1)圆O:=cos+sin,即2=cos+sin,故圆O 的直角坐标方程为:x2+y2=x+y,即x2+y2xy=0直线l:,即sincos=1,则直线的直角坐标方程为:yx=1,即xy+1=0(2)由,可得 ,直线l与圆O公共点的直角坐标为(0,1),故直线l 与圆O 公共点的一个极坐标为【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,属于基础题21【答案】 【解析】解:(1),令f(x)0,则;令f(x)0,则f(x)在x=a时取得最大值,即当,即0a1时,考虑到当x无限趋近于0(从0的右边)时,f(x);当x+时,f(x)f(x)的图象与x轴有2个交点,分别位于(0,)及()即f(x)有2个零点;当,即a=1时,f(x)有1个零点;当,即a1时f(x)没有零点;(2)由得(0x1x2),=,令,设,t(0,1)且h(1)=0则,又t(0,1),h(t)0,h(t)h(1)=0即,又,f(x0)=0【点评】本题在导数的综合应用中属于难题,题目中的两个小问都有需要注意之处,如(1)中,在对0a1进行研究时,一定要注意到f(x)的取值范围,才能确定零点的个数,否则不能确定(2)中,代数运算比较复杂,特别是计算过程中,令的化简和换元,使得原本比较复杂的式子变得简单化而可解,这对学生的综合能力有比较高的要求 22【答案】 【解析】解:(1)将sin+cos=两边平方得:(sin+cos)2=sin2+2sincos+cos2=1+sin=,sin=,(,),cos=;(2)(,),(0,),+(,),sin(+)=0,+(,),cos(+)=,则sin=sin=sin(+)coscos(+)sin=()()=+=【点评】此题考查了两角和与差的正弦函数公式,以及运用诱导公式化简求值,熟练掌握公式是解本题的关键23【答案】 【解析】()解:由4Sn=(an+1)2,令n=1,得,即a1=1,又4Sn+1=(an+1+1)2,整理得:(an+1+an)(an+1an2)=0an0,an+1an=2,则an是等差数列,an=1+2(n1)=2n1;()证明:由()可知,bn=,则b1+b2+bn=24【答案】 【解析】【专题】概率与统计【分析】(I)确定三角形地块的内部和边界上的作物株数,分别求出基本事件的个数,即可求它们恰好“相近”的概率;(II)确定变量的取值,求出相应的概率,从而可得年收获量的分布列与数学期望【解答】解:(I)所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8,从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率为=;(II)先求从所种作物中随机选取一株作物的年收获量为Y的分布列P(Y=51)=P(X=1),P(48)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论