丰满区第二中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
丰满区第二中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
丰满区第二中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
丰满区第二中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
丰满区第二中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷丰满区第二中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 函数y=x+xlnx的单调递增区间是( )A(0,e2)B(e2,+)C(,e2)D(e2,+)2 双曲线上一点P到左焦点的距离为5,则点P到右焦点的距离为( )A13B15C12D113 已知等差数列an满足2a3a+2a13=0,且数列bn 是等比数列,若b8=a8,则b4b12=( )A2B4C8D164 从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( )A. B.C. D.5 在数列an中,a1=3,an+1an+2=2an+1+2an(nN+),则该数列的前2015项的和是( )A7049B7052C14098D141016 已知不等式组表示的平面区域为,若内存在一点,使,则的取值范围为( )A B C D7 设向量,满足:|=3,|=4, =0以,的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )A3B4C5D68 函数的定义域为( )Ax|1x4Bx|1x4,且x2Cx|1x4,且x2Dx|x49 下列命题中的假命题是( )AxR,2x10BxR,lgx1CxN+,(x1)20DxR,tanx=210已知数列an中,a1=1,an+1=an+n,若利用如图所示的程序框图计算该数列的第10项,则判断框内的条件是( ) An8?Bn9?Cn10?Dn11?11在ABC中,已知D是AB边上一点,若=2, =,则=( )ABCD12若某算法框图如图所示,则输出的结果为( )A7B15C31D63二、填空题13若非零向量,满足|+|=|,则与所成角的大小为14圆心在原点且与直线相切的圆的方程为_ .【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.15已知是第四象限角,且sin(+)=,则tan()=16若函数y=f(x)的定义域是,2,则函数y=f(log2x)的定义域为17已知z是复数,且|z|=1,则|z3+4i|的最大值为18【盐城中学2018届高三上第一次阶段性考试】函数f(x)=xlnx的单调减区间为 三、解答题19已知命题p:x2,4,x22x2a0恒成立,命题q:f(x)=x2ax+1在区间上是增函数若pq为真命题,pq为假命题,求实数a的取值范围20(本小题满分12分)两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设分别表示甲,乙,丙3个盒中的球数.(1)求,的概率;(2)记,求随机变量的概率分布列和数学期望.【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力21已知p:,q:x2(a2+1)x+a20,若p是q的必要不充分条件,求实数a的取值范围22已知圆的极坐标方程为24cos()+6=0(1)将极坐标方程化为普通方程;(2)若点P在该圆上,求线段OP的最大值和最小值 23已知函数f(x)=alnx+,曲线y=f(x)在点(1,f(1)处的切线方程为y=2(I)求a、b的值;()当x1时,不等式f(x)恒成立,求实数k的取值范围 24一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:转速x(转/秒)1614128每小时生产有缺陷的零件数y(件)11985(1)画出散点图; (2)如果y与x有线性相关的关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺陷的零件最多为10个,那么机器的转运速度应控制在什么范围内?参考公式:线性回归方程系数公式开始=, =x丰满区第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:函数的定义域为(0,+)求导函数可得f(x)=lnx+2,令f(x)0,可得xe2,函数f(x)的单调增区间是(e2,+)故选B2 【答案】A【解析】解:设点P到双曲线的右焦点的距离是x,双曲线上一点P到左焦点的距离为5,|x5|=24x0,x=13故选A3 【答案】D【解析】解:由等差数列的性质可得a3+a13=2a8,即有a82=4a8,解得a8=4(0舍去),即有b8=a8=4,由等比数列的性质可得b4b12=b82=16故选:D4 【答案】【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P.5 【答案】B【解析】解:an+1an+2=2an+1+2an(nN+),(an+12)(an2)=2,当n2时,(an2)(an12)=2,可得an+1=an1,因此数列an是周期为2的周期数列a1=3,3a2+2=2a2+23,解得a2=4,S2015=1007(3+4)+3=7052【点评】本题考查了数列的周期性,考查了计算能力,属于中档题6 【答案】A 【解析】解析:本题考查线性规划中最值的求法平面区域如图所示,先求的最小值,当时,在点取得最小值;当时,在点取得最小值若内存在一点,使,则有的最小值小于,或,选A7 【答案】B【解析】解:向量ab=0,此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现故选B【点评】本题主要考查了直线与圆的位置关系可采用数形结合结合的方法较为直观8 【答案】B【解析】解:要使函数有意义,只须,即,解得1x4且x2,函数f(x)的定义域为x|1x4且x2故选B9 【答案】C【解析】解:AxR,2x1=0正确;B当0x10时,lgx1正确;C当x=1,(x1)2=0,因此不正确;D存在xR,tanx=2成立,正确综上可知:只有C错误故选:C【点评】本题考查了指数函数与对数函数、正切函数的单调性,属于基础题10【答案】B【解析】解:n=1,满足条件,执行循环体,S=1+1=2n=2,满足条件,执行循环体,S=1+1+2=4n=3,满足条件,执行循环体,S=1+1+2+3=7n=10,不满足条件,退出循环体,循环满足的条件为n9,故选B【点评】本题主要考查了当型循环结构,算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题11【答案】A【解析】解:在ABC中,已知D是AB边上一点=2, =,=,=,故选A【点评】经历平面向量分解定理的探求过程,培养观察能力、抽象概括能力、体会化归思想,基底给定时,分解形式唯一,字母系数是被基底唯一确定的数量12【答案】 D【解析】解:模拟执行算法框图,可得A=1,B=1满足条件A5,B=3,A=2满足条件A5,B=7,A=3满足条件A5,B=15,A=4满足条件A5,B=31,A=5满足条件A5,B=63,A=6不满足条件A5,退出循环,输出B的值为63故选:D【点评】本题主要考查了程序框图和算法,正确得到每次循环A,B的值是解题的关键,属于基础题二、填空题13【答案】90 【解析】解:=与所成角的大小为90故答案为90【点评】本题用向量模的平方等于向量的平方来去掉绝对值14【答案】【解析】由题意,圆的半径等于原点到直线的距离,所以,故圆的方程为.15【答案】 【解析】解:是第四象限角,则,又sin(+)=,cos(+)=cos()=sin(+)=,sin()=cos(+)=则tan()=tan()=故答案为:16【答案】,4 【解析】解:由题意知log2x2,即log2log2xlog24,x4故答案为:,4【点评】本题考查函数的定义域及其求法,正确理解“函数y=f(x)的定义域是,2,得到log2x2”是关键,考查理解与运算能力,属于中档题17【答案】6 【解析】解:|z|=1,|z3+4i|=|z(34i)|z|+|34i|=1+=1+5=6,|z3+4i|的最大值为6,故答案为:6【点评】本题考查复数求模,着重考查复数模的运算性质,属于基础题18【答案】(0,1)【解析】考点:本题考查函数的单调性与导数的关系三、解答题19【答案】 【解析】解:x2,4,x22x2a0恒成立,等价于ax2x在x2,4恒成立,而函数g(x)=x2x在x2,4递增,其最大值是g(4)=4,a4,若p为真命题,则a4;f(x)=x2ax+1在区间上是增函数,对称轴x=,a1,若q为真命题,则a1;由题意知p、q一真一假,当p真q假时,a4;当p假q真时,a1,所以a的取值范围为(,14,+)20【答案】【解析】(1)由,知,甲、乙、丙3个盒中的球数分别为0,1,2,此时的概率.(4分)21【答案】 【解析】解:由p: 1x2,方程x2(a2+1)x+a2=0的两个根为x=1或x=a2,若|a|1,则q:1xa2,此时应满足a22,解得1|a|,当|a|=1,q:x,满足条件,当|a|1,则q:a2x1,此时应满足|a|1,综上【点评】本题主要考查复合命题的应用,以及充分条件和必要条件的应用,结合一元二次不等式的解法是解决本题的关键22【答案】 【解析】解:(1)24cos()+6=0,展开为:24(cos+sin)+6=0化为:x2+y24x4y+6=0(2)由x2+y24x4y+6=0可得:(x2)2+(y2)2=2圆心C(2,2),半径r=|OP|=2线段OP的最大值为2+=3最小值为2= 23【答案】 【解析】解:(I)函数f(x)=alnx+的导数为f(x)=,且直线y=2的斜率为0,又过点(1,2),f(1)=2b=2,f(1)=ab=0,解得a=b=1(II)当x1时,不等式f(x),即为(x1)lnx+(xk)lnx,即(k1)lnx+0令g(x)=(k1)lnx+,g(x)=+1+=,令m(x)=x2+(k1)x+1,当1即k1时,m(x)在(1,+)单调递增且m(1)0,所以当x1时,g(x)0,g(x)在(1,+)单调递增,则g(x)g(1)=0即f(x)恒成立当1即k1时,m(x)在上(1,)上单调递减,且m(1)0,故当x(1,)时,m(x)0即g(x)0,所以函数g(x)在(1,)单调递减,当x(1,)时,g(x)0与题设矛盾,综上可得k的取值范围为1,+) 24【答案】 【解析】【专题】应用题;概率与统计【分析】(1)利用所给的数据画出散点图;(2)先做出横标和纵标的平均数,做出利用最小二乘法求线性回归方程的系数的量,做出系数,求出a,写

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论