石拐区高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
石拐区高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
石拐区高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
石拐区高中2018-2019学年上学期高二数学12月月考试题含解析_第4页
石拐区高中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

石拐区高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设集合( )ABCD 2 某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为( )A4320B2400C2160D13203 复数z=(其中i是虚数单位),则z的共轭复数=( )AiBiC +iD +i4 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)=被称为狄利克雷函数,其中R为实数集,Q为有理数集,则关于函数f(x)有如下四个命题:f(f(x)=1;函数f(x)是偶函数;任取一个不为零的有理数T,f(x+T)=f(x)对任意的x=R恒成立;存在三个点A(x1,f(x1),B(x2,f(x2),C(x3,f(x3),使得ABC为等边三角形其中真命题的个数有( )A1个B2个C3个D4个5 已知函数f(x)是定义在R上的奇函数,当x0时,.若,f(x-1)f(x),则实数a的取值范围为ABCD6 如图RtOAB是一平面图形的直观图,斜边OB=2,则这个平面图形的面积是( )AB1CD7 已知两点M(1,),N(4,),给出下列曲线方程:4x+2y1=0; x2+y2=3; +y2=1; y2=1在曲线上存在点P满足|MP|=|NP|的所有曲线方程是( )ABCD8 若曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则a+b=( )A1B2C3D49 已知为抛物线上两个不同的点,为抛物线的焦点若线段的中点的纵坐标为,则直线的方程为( ) A B C D10已知双曲线和离心率为的椭圆有相同的焦点,是两曲线的一个公共点,若,则双曲线的离心率等于( )A B C D11函数f(x)=3x+x的零点所在的一个区间是( )A(3,2)B(2,1)C(1,0)D(0,1)12已知集合,则下列关系式错误的是( )A B C D二、填空题13若在圆C:x2+(ya)2=4上有且仅有两个点到原点O距离为1,则实数a的取值范围是14已知,则不等式的解集为_【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力15函数y=lgx的定义域为16函数图象上不同两点处的切线的斜率分别是,规定(为线段AB的长度)叫做曲线在点A与点B之间的“弯曲度”,给出以下命题:函数图象上两点A与B的横坐标分别为1和2,则;存在这样的函数,图象上任意两点之间的“弯曲度”为常数;设点A,B是抛物线上不同的两点,则;设曲线(e是自然对数的底数)上不同两点,若恒成立,则实数t的取值范围是.其中真命题的序号为_.(将所有真命题的序号都填上)17已知x是400和1600的等差中项,则x=18当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测的1564岁劳动人口所占比例:年份20302035204020452050年份代号t12345所占比例y6865626261根据上表,y关于t的线性回归方程为附:回归直线的斜率和截距的最小二乘估计公式分别为: =, =三、解答题19已知a,b,c分别为ABC三个内角A,B,C的对边,且满足2bcosC=2ac()求B; ()若ABC的面积为,b=2求a,c的值20已知椭圆C: +=1(ab0)的左,右焦点分别为F1,F2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切()求椭圆C的方程;()如图,若斜率为k(k0)的直线l与x轴,椭圆C顺次交于P,Q,R(P点在椭圆左顶点的左侧)且RF1F2=PF1Q,求证:直线l过定点,并求出斜率k的取值范围21.已知定义域为R的函数f(x)=是奇函数(1)求a的值;(2)判断f(x)在(,+)上的单调性(直接写出答案,不用证明);(3)若对于任意tR,不等式f(t22t)+f(2t2k)0恒成立,求k的取值范围22(本小题满分12分)已知过抛物线的焦点,斜率为的直线交抛物线于和()两点,且(I)求该抛物线的方程;(II)如图所示,设为坐标原点,取上不同于的点,以为直径作圆与相交另外一点,求该圆面积的最小值时点的坐标23(本题满分15分)已知抛物线的方程为,点在抛物线上(1)求抛物线的方程;(2)过点作直线交抛物线于不同于的两点,若直线,分别交直线于,两点,求最小时直线的方程【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.24(文科)(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图(1)求直方图中的值;(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由石拐区高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:集合A中的不等式,当x0时,解得:x;当x0时,解得:x,集合B中的解集为x,则AB=(,+)故选B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键2 【答案】D【解析】解:依题意,6名同学可分两组:第一组(1,1,1,3),利用间接法,有=388,第二组(1,1,2,2),利用间接法,有()=932根据分类计数原理,可得388+932=1320种,故选D【点评】本题考查排列、组合及简单计数问题,考查分类讨论思想与转化思想,考查理解与运算能力,属于中档题3 【答案】C【解析】解:z=,=故选:C【点评】本题考查了复数代数形式的乘除运算,是基础题4 【答案】 D【解析】解:当x为有理数时,f(x)=1;当x为无理数时,f(x)=0当x为有理数时,f(f(x)=f(1)=1;当x为无理数时,f(f(x)=f(0)=1即不管x是有理数还是无理数,均有f(f(x)=1,故正确;有理数的相反数还是有理数,无理数的相反数还是无理数,对任意xR,都有f(x)=f(x),故正确; 若x是有理数,则x+T也是有理数; 若x是无理数,则x+T也是无理数根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对xR恒成立,故正确; 取x1=,x2=0,x3=,可得f(x1)=0,f(x2)=1,f(x3)=0A(,0),B(0,1),C(,0),恰好ABC为等边三角形,故正确故选:D【点评】本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题5 【答案】B【解析】当x0时,f(x)=,由f(x)=x3a2,x2a2,得f(x)a2;当a2x2a2时,f(x)=a2;由f(x)=x,0xa2,得f(x)a2。当x0时,。函数f(x)为奇函数,当x0时,。对xR,都有f(x1)f(x),2a2(4a2)1,解得:。故实数a的取值范围是。6 【答案】D【解析】解:RtOAB是一平面图形的直观图,斜边OB=2,直角三角形的直角边长是,直角三角形的面积是,原平面图形的面积是12=2故选D7 【答案】 D【解析】解:要使这些曲线上存在点P满足|MP|=|NP|,需曲线与MN的垂直平分线相交MN的中点坐标为(,0),MN斜率为=MN的垂直平分线为y=2(x+),4x+2y1=0与y=2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知不符合题意x2+y2=3与y=2(x+),联立,消去y得5x212x+6=0,=1444560,可知中的曲线与MN的垂直平分线有交点,中的方程与y=2(x+),联立,消去y得9x224x16=0,0可知中的曲线与MN的垂直平分线有交点,中的方程与y=2(x+),联立,消去y得7x224x+20=0,0可知中的曲线与MN的垂直平分线有交点,故选D8 【答案】A【解析】解:f(x)=acosx,g(x)=x2+bx+1,f(x)=asinx,g(x)=2x+b,曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,f(0)=a=g(0)=1,且f(0)=0=g(0)=b,即a=1,b=0a+b=1故选:A【点评】本题考查利用导数研究曲线上某点的切线方程,函数在某点处的导数,就是曲线上过该点的切线的斜率,是中档题9 【答案】D 【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法设,那么,线段的中点坐标为.由,两式相减得,而,直线的方程为,即,选D10【答案】C【解析】试题分析:设椭圆的长半轴长为,双曲线的实半轴长为,焦距为,且不妨设,由,得,又,由余弦定理可知:,设双曲线的离心率为,则,解得.故答案选C考点:椭圆的简单性质【思路点晴】本题主要考查圆锥曲线的定义和离心率.根据椭圆和双曲线的定义,由为公共点,可把焦半径、的长度用椭圆的半长轴以及双曲线的半实轴来表示,接着用余弦定理表示,成为一个关于以及的齐次式,等式两边同时除以,即可求得离心率.圆锥曲线问题在选择填空中以考查定义和几何性质为主.11【答案】C【解析】解:由函数f(x)=3x+x可知函数f(x)在R上单调递增,又f(1)=10,f(0)=30+0=10,f(1)f(0)0,可知:函数f(x)的零点所在的区间是(1,0)故选:C【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题12【答案】A 【解析】试题分析:因为 ,而,即B、C正确,又因为且,所以,即D正确,故选A. 1考点:集合与元素的关系.二、填空题13【答案】3a1或1a3 【解析】解:根据题意知:圆x2+(ya)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,两圆圆心距d=|a|,21|a|2+1,3a1或1a3故答案为:3a1或1a3【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x2+(ya)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,属中档题14【答案】【解析】函数在递增,当时,解得;当时,解得,综上所述,不等式的解集为15【答案】x|x0 【解析】解:对数函数y=lgx的定义域为:x|x0故答案为:x|x0【点评】本题考查基本函数的定义域的求法16【答案】【解析】试题分析:错:对:如;对;错;,因为恒成立,故.故答案为.111考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题.17【答案】1000 【解析】解:x是400和1600的等差中项,x=1000故答案为:100018【答案】y=1.7t+68.7 【解析】解: =, =63.6=(2)4.4+(1)1.4+0+1(1.6)+2(2.6)=17=4+1+0+1+2=10=1.7. =63.6+1.73=68.7y关于t的线性回归方程为y=1.7t+68.7故答案为y=1.7t+68.7【点评】本题考查了线性回归方程的解法,属于基础题三、解答题19【答案】 【解析】解:()已知等式2bcosC=2ac,利用正弦定理化简得:2sinBcosC=2sinAsinC=2sin(B+C)sinC=2sinBcosC+2cosBsinCsinC,整理得:2cosBsinCsinC=0,sinC0,cosB=,则B=60;()ABC的面积为=acsinB=ac,解得:ac=4,又b=2,由余弦定理可得:22=a2+c2ac=(a+c)23ac=(a+c)212,解得:a+c=4,联立解得:a=c=220【答案】 【解析】()解:椭圆的左,右焦点分别为F1(c,0),F2(c,0),椭圆的离心率为,即有=,即a=c,b=c,以原点为圆心,椭圆的短半轴长为半径的圆方程为x2+y2=b2,直线y=x+与圆相切,则有=1=b,即有a=,则椭圆C的方程为+y2=1;()证明:设Q(x1,y1),R(x2,y2),F1(1,0),由RF1F2=PF1Q,可得直线QF1和RF1关于x轴对称,即有+=0,即+=0,即有x1y2+y2+x2y1+y1=0,设直线PQ:y=kx+t,代入椭圆方程,可得(1+2k2)x2+4ktx+2t22=0,判别式=16k2t24(1+2k2)(2t22)0,即为t22k21x1+x2=,x1x2=,y1=kx1+t,y2=kx2+t,代入可得,(k+t)(x1+x2)+2t+2kx1x2=0,将代入,化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论