固安县第一中学校2018-2019学年上学期高二数学12月月考试题含解析_第1页
固安县第一中学校2018-2019学年上学期高二数学12月月考试题含解析_第2页
固安县第一中学校2018-2019学年上学期高二数学12月月考试题含解析_第3页
固安县第一中学校2018-2019学年上学期高二数学12月月考试题含解析_第4页
固安县第一中学校2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

固安县第一中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知集合,则满足条件的集合的个数为 A、 B、 C、 D、2 已知抛物线x2=2y的一条弦AB的中点坐标为(1,5),则这条弦AB所在的直线方程是( )Ay=x4By=2x3Cy=x6Dy=3x23 已知函数y=f(x)的周期为2,当x1,1时 f(x)=x2,那么函数y=f(x)的图象与函数y=|lgx|的图象的交点共有( )A10个B9个C8个D1个4 抛物线y=x2上的点到直线4x+3y8=0距离的最小值是( )ABCD35 已知全集U=R,集合M=x|2x12和N=x|x=2k1,k=1,2,的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有( )A3个B2个C1个D无穷多个6 在中,其面积为,则等于( )A B C D7 是平面内不共线的两向量,已知,若三点共线,则的值是( )A1 B2 C-1 D-28 对一切实数x,不等式x2+a|x|+10恒成立,则实数a的取值范围是( )A(,2)BD上是减函数,那么b+c( )A有最大值B有最大值C有最小值D有最小值9 若函数y=x2+bx+3在0,+)上是单调函数,则有( )Ab0Bb0Cb0Db010运行如图所示的程序框图,输出的所有实数对(x,y)所对应的点都在某函数图象上,则该函数的解析式为( )Ay=x+2By=Cy=3xDy=3x311已知函数f(x)=2x2,则函数y=|f(x)|的图象可能是( )ABCD12函数y=x+xlnx的单调递增区间是( )A(0,e2)B(e2,+)C(,e2)D(e2,+)二、填空题13设MP和OM分别是角的正弦线和余弦线,则给出的以下不等式:MPOM0;OM0MP;OMMP0;MP0OM,其中正确的是(把所有正确的序号都填上)14【徐州市第三中学20172018学年度高三第一学期月考】函数的单调增区间是_15若P(1,4)为抛物线C:y2=mx上一点,则P点到该抛物线的焦点F的距离为|PF|=16已知实数,满足,目标函数的最大值为4,则_【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力17为了预防流感,某学校对教室用药熏消毒法进行消毒已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=()ta(a为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过小时后,学生才能回到教室 18已知函数的三个零点成等比数列,则 .三、解答题19己知函数f(x)=lnxax+1(a0)(1)试探究函数f(x)的零点个数;(2)若f(x)的图象与x轴交于A(x1,0)B(x2,0)(x1x2)两点,AB中点为C(x0,0),设函数f(x)的导函数为f(x),求证:f(x0)0 20设函数f(x)=lnxax+1()当a=1时,求曲线f(x)在x=1处的切线方程;()当a=时,求函数f(x)的单调区间;()在()的条件下,设函数g(x)=x22bx,若对于x11,2,x20,1,使f(x1)g(x2)成立,求实数b的取值范围21已知正项数列an的前n项的和为Sn,满足4Sn=(an+1)2()求数列an通项公式;()设数列bn满足bn=(nN*),求证:b1+b2+bn22已知函数上为增函数,且(0,),mR(1)求的值;(2)当m=0时,求函数f(x)的单调区间和极值;(3)若在上至少存在一个x0,使得f(x0)g(x0)成立,求m的取值范围 23已知f(x)=(1+x)m+(1+2x)n(m,nN*)的展开式中x的系数为11(1)求x2的系数取最小值时n的值(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和24(本小题满分12分)已知函数.(1)当时,求函数的值域;(2)已知,函数,若函数在区间上是增函数,求的最大值固安县第一中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】, ,可以为,2 【答案】A【解析】解:设A、B两点的坐标分别为(x1,y1),(x2,y2),则x1+x2=2,x12=2y1,x22=2y2两式相减可得,(x1+x2)(x1x2)=2(y1y2)直线AB的斜率k=1,弦AB所在的直线方程是y+5=x+1,即y=x4故选A,3 【答案】A【解析】解:作出两个函数的图象如上函数y=f(x)的周期为2,在1,0上为减函数,在0,1上为增函数函数y=f(x)在区间0,10上有5次周期性变化,在0,1、2,3、4,5、6,7、8,9上为增函数,在1,2、3,4、5,6、7,8、9,10上为减函数,且函数在每个单调区间的取值都为0,1,再看函数y=|lgx|,在区间(0,1上为减函数,在区间1,+)上为增函数,且当x=1时y=0; x=10时y=1,再结合两个函数的草图,可得两图象的交点一共有10个,故选:A【点评】本题着重考查了基本初等函数的图象作法,以及函数图象的周期性,属于基本题4 【答案】A【解析】解:由,得3x24x+8=0=(4)2438=800所以直线4x+3y8=0与抛物线y=x2无交点设与直线4x+3y8=0平行的直线为4x+3y+m=0联立,得3x24xm=0由=(4)243(m)=16+12m=0,得m=所以与直线4x+3y8=0平行且与抛物线y=x2相切的直线方程为4x+3y=0所以抛物线y=x2上的一点到直线4x+3y8=0的距离的最小值是=故选:A【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题5 【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为MN,又由M=x|2x12得1x3,即M=x|1x3,在此范围内的奇数有1和3所以集合MN=1,3共有2个元素,故选B6 【答案】B【解析】试题分析:由题意得,三角形的面积,所以,又,所以,又由余弦定理,可得,所以,则,故选B考点:解三角形【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理和余弦定理、三角形的面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中利用比例式的性质,得到是解答的关键,属于中档试题7 【答案】B【解析】考点:向量共线定理8 【答案】B【解析】解:由f(x)在上是减函数,知f(x)=3x2+2bx+c0,x,则15+2b+2c0b+c故选B9 【答案】A【解析】解:抛物线f(x)=x2+bx+3开口向上,以直线x=为对称轴,若函数y=x2+bx+3在0,+)上单调递增函数,则0,解得:b0,故选:A【点评】本题考查二次函数的性质和应用,是基础题解题时要认真审题,仔细解答10【答案】 C【解析】解:模拟程序框图的运行过程,得;该程序运行后输出的是实数对(1,3),(2,9),(3,27),(4,81);这组数对对应的点在函数y=3x的图象上故选:C【点评】本题考查了程序框图的应用问题,是基础题目11【答案】B【解析】解:先做出y=2x的图象,在向下平移两个单位,得到y=f(x)的图象,再将x轴下方的部分做关于x轴的对称图象即得y=|f(x)|的图象故选B【点评】本题考查含有绝对值的函数的图象问题,先作出y=f(x)的图象,再将x轴下方的部分做关于x轴的对称图象即得y=|f(x)|的图象12【答案】B【解析】解:函数的定义域为(0,+)求导函数可得f(x)=lnx+2,令f(x)0,可得xe2,函数f(x)的单调增区间是(e2,+)故选B二、填空题13【答案】 【解析】解:由MP,OM分别为角的正弦线、余弦线,如图,OM0MP故答案为:【点评】本题的考点是三角函数线,考查用作图的方法比较三角函数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小14【答案】【解析】 ,所以增区间是15【答案】5 【解析】解:P(1,4)为抛物线C:y2=mx上一点,即有42=m,即m=16,抛物线的方程为y2=16x,焦点为(4,0),即有|PF|=5故答案为:5【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题16【答案】【解析】作出可行域如图所示:作直线:,再作一组平行于的直线:,当直线经过点时,取得最大值,所以,故17【答案】0.6【解析】解:当t0.1时,可得1=()0.1a0.1a=0a=0.1由题意可得y0.25=,即()t0.1,即t0.1解得t0.6,由题意至少需要经过0.6小时后,学生才能回到教室故答案为:0.6【点评】本题考查函数、不等式的实际应用,以及识图和理解能力易错点:只单纯解不等式,而忽略题意,得到其他错误答案18【答案】考点:三角函数的图象与性质,等比数列的性质,对数运算【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题三、解答题19【答案】 【解析】解:(1),令f(x)0,则;令f(x)0,则f(x)在x=a时取得最大值,即当,即0a1时,考虑到当x无限趋近于0(从0的右边)时,f(x);当x+时,f(x)f(x)的图象与x轴有2个交点,分别位于(0,)及()即f(x)有2个零点;当,即a=1时,f(x)有1个零点;当,即a1时f(x)没有零点;(2)由得(0x1x2),=,令,设,t(0,1)且h(1)=0则,又t(0,1),h(t)0,h(t)h(1)=0即,又,f(x0)=0【点评】本题在导数的综合应用中属于难题,题目中的两个小问都有需要注意之处,如(1)中,在对0a1进行研究时,一定要注意到f(x)的取值范围,才能确定零点的个数,否则不能确定(2)中,代数运算比较复杂,特别是计算过程中,令的化简和换元,使得原本比较复杂的式子变得简单化而可解,这对学生的综合能力有比较高的要求 20【答案】 【解析】解:函数f(x)的定义域为(0,+),(2分)()当a=1时,f(x)=lnxx1,f(1)=2,f(1)=0,f(x)在x=1处的切线方程为y=2(5分)()=(6分)令f(x)0,可得0x1,或x2;令f(x)0,可得1x2故当时,函数f(x)的单调递增区间为(1,2);单调递减区间为(0,1),(2,+).()当时,由()可知函数f(x)在(1,2)上为增函数,函数f(x)在1,2上的最小值为f(1)=(9分)若对于x11,2,x20,1使f(x1)g(x2)成立,等价于g(x)在0,1上的最小值不大于f(x)在(0,e上的最小值(*) (10分)又,x0,1当b0时,g(x)在0,1上为增函数,与(*)矛盾当0b1时,由及0b1得,当b1时,g(x)在0,1上为减函数,此时b1(11分)综上,b的取值范围是(12分)【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查恒成立问题,解题的关键是将对于x11,2,x20,1使f(x1)g(x2)成立,转化为g(x)在0,1上的最小值不大于f(x)在(0,e上的最小值21【答案】 【解析】()解:由4Sn=(an+1)2,令n=1,得,即a1=1,又4Sn+1=(an+1+1)2,整理得:(an+1+an)(an+1an2)=0an0,an+1an=2,则an是等差数列,an=1+2(n1)=2n1;()证明:由()可知,bn=,则b1+b2+bn=22【答案】 【解析】解:(1)函数上为增函数,g(x)=+0在,mx0,2lnx0,在上不存在一个x0,使得f(x0)g(x0)成立当m0时,F(x)=m+=,x,2e2x0,mx2+m0,F(x)0在恒成立故F(x)在上单调递增,F(x) max=F(e)=me4,只要me40,解得m故m的取值范围是(,+)【点评】本题考查利用导数求闭区间上函数的最值,考查运算求解能力,推理论证能力;考查化归与转化思想对数学思维的要求比较高,有一定的探索性综合性强,难度大,是高考的重点解题时要认真审题,仔细解答 23【答案】 【解析】【专题】计算题【分析】(1)利用二项展开式的通项公式求出展开式的x的系数,列出方程得到m,n的关系;利用二项展开式的通项公式求出x2的系数,将m,n的关系代入得到关于m的二次函数,配方求出最小值(2)通过对x分别赋值1,1,两式子相加求出展开式中x的奇次幂项的系数之和【解答】解:(1)由已知Cm1+2Cn1=11,m+2n=11,x2的系数为Cm2+22Cn2=+2n(n1)=+(11m)(1)=(m)2+mN*,m=5时,x2的系数取得最小值22,此时n=3(2)由(1)知,当x2的系数取得最小值时,m=5,n

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论