




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷和田市实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知函数f(x)=lnx+2x6,则它的零点所在的区间为( )A(0,1)B(1,2)C(2,3)D(3,4)2 若集合M=y|y=2x,x1,N=x|0,则 NM( )A(11,B(0,1C1,1D(1,23 已知双曲线的方程为=1,则双曲线的离心率为( )ABC或D或4 (2014新课标I)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在0,的图象大致为( )ABCD5 下列各组函数中,表示同一函数的是( )A、x与 B、 与 C、与 D、与6 已知定义在R上的可导函数y=f(x)是偶函数,且满足xf(x)0, =0,则满足的x的范围为( )A(,)(2,+)B(,1)(1,2)C(,1)(2,+)D(0,)(2,+)7 过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是原点,若|AF|=3,则AOF的面积为( )ABCD28 函数y=sin(2x+)图象的一条对称轴方程为( )Ax=Bx=Cx=Dx=9 九章算术是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽AD3丈,长AB4丈,上棱EF2丈,EF平面ABCD.EF与平面ABCD的距离为1丈,问它的体积是( )A4立方丈 B5立方丈C6立方丈 D8立方丈 10如图所示,在三棱锥的六条棱所在的直线中,异面直线共有( )111A2对 B3对 C4对 D6对11已知椭圆,长轴在y轴上,若焦距为4,则m等于( )A4B5C7D812在ABC中,若A=2B,则a等于( )A2bsinAB2bcosAC2bsinBD2bcosB二、填空题13已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=14抛物线y2=8x上一点P到焦点的距离为10,则P点的横坐标为15设实数x,y满足,向量=(2xy,m),=(1,1)若,则实数m的最大值为16已知i是虚数单位,且满足i2=1,aR,复数z=(a2i)(1+i)在复平面内对应的点为M,则“a=1”是“点M在第四象限”的条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)17一质点从正四面体ABCD的顶点A出发沿正四面体的棱运动,每经过一条棱称为一次运动第1次运动经过棱AB由A到B,第2次运动经过棱BC由B到C,第3次运动经过棱CA由C到A,第4次经过棱AD由A到D,对于Nn*,第3n次运动回到点A,第3n+1次运动经过的棱与3n1次运动经过的棱异面,第3n+2次运动经过的棱与第3n次运动经过的棱异面按此运动规律,质点经过2015次运动到达的点为18在空间直角坐标系中,设,且,则 .三、解答题19如图,四边形ABCD内接于O,过点A作O的切钱EP交CB 的延长线于P,己知PAB=25(1)若BC是O的直径,求D的大小;(2)若DAE=25,求证:DA2=DCBP 20椭圆C: =1,(ab0)的离心率,点(2,)在C上(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M证明:直线OM的斜率与l的斜率的乘积为定值21已知f(x)是定义在R上的奇函数,当x0时,f(x)=()x(1)求当x0时f(x)的解析式;(2)画出函数f(x)在R上的图象;(3)写出它的单调区间22已知函数f(x)=(ax2+x1)ex,其中e是自然对数的底数,aR()若a=0,求曲线f(x)在点(1,f(1)处的切线方程;()若,求f(x)的单调区间;()若a=1,函数f(x)的图象与函数的图象仅有1个公共点,求实数m的取值范围 23若已知,求sinx的值24已知函数f(x)=ax3+2xa,()求函数f(x)的单调递增区间;()若a=n且nN*,设xn是函数fn(x)=nx3+2xn的零点(i)证明:n2时存在唯一xn且;(i i)若bn=(1xn)(1xn+1),记Sn=b1+b2+bn,证明:Sn1 和田市实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:易知函数f(x)=lnx+2x6,在定义域R+上单调递增因为当x0时,f(x);f(1)=40;f(2)=ln220;f(3)=ln30;f(4)=ln4+20可见f(2)f(3)0,故函数在(2,3)上有且只有一个零点故选C2 【答案】B【解析】解:由M中y=2x,x1,得到0y2,即M=(0,2,由N中不等式变形得:(x1)(x+1)0,且x+10,解得:1x1,即N=(1,1,则MN=(0,1,故选:B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键3 【答案】C【解析】解:双曲线的方程为=1,焦点坐标在x轴时,a2=m,b2=2m,c2=3m,离心率e=焦点坐标在y轴时,a2=2m,b2=m,c2=3m,离心率e=故选:C【点评】本题考查双曲线的离心率的求法,注意实轴所在轴的易错点4 【答案】 C【解析】解:在直角三角形OMP中,OP=1,POM=x,则OM=|cosx|,点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用5 【答案】C【解析】试题分析:如果两个函数为同一函数,必须满足以下两点:定义域相同,对应法则相同。选项A中两个函数定义域不同,选项B中两个函数对应法则不同,选项D中两个函数定义域不同。故选C。考点:同一函数的判定。6 【答案】D【解析】解:当x0时,由xf(x)0,得f(x)0,即此时函数单调递减,函数f(x)是偶函数,不等式等价为f(|),即|,即或,解得0x或x2,故x的取值范围是(0,)(2,+)故选:D【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键7 【答案】B【解析】解:抛物线y2=4x的准线l:x=1|AF|=3,点A到准线l:x=1的距离为31+xA=3xA=2,yA=2,AOF的面积为=故选:B【点评】本题考查抛物线的定义,考查三角形的面积的计算,确定A的坐标是解题的关键8 【答案】A【解析】解:对于函数y=sin(2x+),令2x+=k+,kz,求得x=,可得它的图象的对称轴方程为x=,kz,故选:A【点评】本题主要考查正弦函数的图象的对称性,属于基础题9 【答案】【解析】解析:选B.如图,设E、F在平面ABCD上的射影分别为P,Q,过P,Q分别作GHMNAD交AB于G,M,交DC于H,N,连接EH、GH、FN、MN,则平面EGH与平面FMN将原多面体分成四棱锥EAGHD与四棱锥FMBCN与直三棱柱EGHFMN.由题意得GHMNAD3,GMEF2,EPFQ1,AGMBABGM2,所求的体积为V(S矩形AGHDS矩形MBCN)EPSEGHEF(23)13125立方丈,故选B.10【答案】B【解析】试题分析:三棱锥中,则与、与、与都是异面直线,所以共有三对,故选B考点:异面直线的判定11【答案】D【解析】解:将椭圆的方程转化为标准形式为,显然m210m,即m6,解得m=8故选D【点评】本题主要考查了椭圆的简单性质要求学生对椭圆中对长轴和短轴即及焦距的关系要明了12【答案】D【解析】解:A=2B,sinA=sin2B,又sin2B=2sinBcosB,sinA=2sinBcosB,根据正弦定理=2R得:sinA=,sinB=,代入sinA=2sinBcosB得:a=2bcosB故选D二、填空题13【答案】5 【解析】解:求导得:f(x)=3ax2+2bx+c,结合图象可得x=1,2为导函数的零点,即f(1)=f(2)=0,故,解得故=5故答案为:514【答案】8 【解析】解:抛物线y2=8x=2px,p=4,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,|MF|=x+=x+2=10,x=8,故答案为:8【点评】活用抛物线的定义是解决抛物线问题最基本的方法抛物线上的点到焦点的距离,叫焦半径到焦点的距离常转化为到准线的距离求解15【答案】6 【解析】解: =(2xy,m),=(1,1)若,2xy+m=0,即y=2x+m,作出不等式组对应的平面区域如图:平移直线y=2x+m,由图象可知当直线y=2x+m经过点C时,y=2x+m的截距最大,此时z最大由,解得,代入2xy+m=0得m=6即m的最大值为6故答案为:6【点评】本题主要考查线性规划的应用,利用m的几何意义结合数形结合,即可求出m的最大值根据向量平行的坐标公式是解决本题的关键16【答案】充分不必要 【解析】解:复数z=(a2i)(1+i)=a+2+(a2)i,在复平面内对应的点M的坐标是(a+2,a2),若点在第四象限则a+20,a20,2a2,“a=1”是“点M在第四象限”的充分不必要条件,故答案为:充分不必要【点评】本题考查条件问题,考查复数的代数表示法及其几何意义,考查各个象限的点的坐标特点,本题是一个基础题17【答案】D 【解析】解:根据题意,质点运动的轨迹为:ABCADBACDA接着是BCADBACDA周期为9质点经过2015次运动,2015=2239+8,质点到达点D故答案为:D【点评】本题考查了函数的周期性,本题难度不大,属于基础题18【答案】1【解析】试题分析:,解得:,故填:1.考点:空间向量的坐标运算三、解答题19【答案】 【解析】解:(1)EP与O相切于点A,ACB=PAB=25,又BC是O的直径,ABC=65,四边形ABCD内接于O,ABC+D=180,D=115证明:(2)DAE=25,ACD=PAB,D=PBA,ADCPBA,又DA=BA,DA2=DCBP 20【答案】 【解析】解:(1)椭圆C: =1,(ab0)的离心率,点(2,)在C上,可得,解得a2=8,b2=4,所求椭圆C方程为:(2)设直线l:y=kx+b,(k0,b0),A(x1,y1),B(x2,y2),M(xM,yM),把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b28=0,故xM=,yM=kxM+b=,于是在OM的斜率为:KOM=,即KOMk=直线OM的斜率与l的斜率的乘积为定值【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力21【答案】 【解析】解:(1)若 x0,则x0(1分)当x0时,f(x)=()xf(x)=()xf(x)是定义在R上的奇函数,f(x)=f(x),f(x)=()x=2x(4分)(2)(x)是定义在R上的奇函数,当x=0时,f(x)=0,f(x)=(7分)函数图象如下图所示:(3)由(2)中图象可得:f(x)的减区间为(,+)(11分)(用R表示扣1分)无增区间(12分)【点评】本题考查的知识点是函数的奇偶性,函数的解析式,函数的图象,分段函数的应用,函数的单调性,难度中档22【答案】 【解析】解:()a=0,f(x)=(x1)ex,f(x)=ex+(x1)ex=xex,曲线f(x)在点(1,f(1)处的切线斜率为k=f(1)=e又f(1)=0,所求切线方程为y=e(x1),即exy4=0()f(x)=(2ax+1)ex+(ax2+x1)ex=ax2+(2a+1)xex=x(ax+2a+1)ex,若a=,f(x)=x2ex0,f(x)的单调递减区间为(,+),若a,当x或x0时,f(x)0;当x0时,f(x)0f(x)的单调递减区间为(,0,+);单调递增区间为,0()当a=1时,由()知,f(x)=(x2+x1)ex在(,1)上单调递减,在1,0单调递增,在0,+)上单调递减,f(x)在x=1处取得极小值f(1)=,在x=0处取得极大值f(0)=1,由,得g(x)=2x2+2x当x1或x0时,g(x)0;当1x0时,g(x)0g(x)在(,1上单调递增,在1,0单调递减,在0,+)上单调递增故g(x)在x=1处取得极大值,在x=0处取得极小值g(0)=m,数f(x)与函数g(x)的图象仅有1个公共点,g(1)f(1)或g(0)f(0),即.【点评】本题考查了曲线的切线方程问题,考查函数的单调性、极值问题,考查导数的应用,是一道中档题23【答案】 【解析】解:,2,sin()=sinx=sin(x+)=sin()coscos()sin=【点评】本题考查了两角和差的余弦函数公式,属于基础题24【答案】 【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025河南新乡市长垣行知学校中小学教师招聘模拟试卷附答案详解(典型题)
- QR码支付全球化-洞察与解读
- 2025湖北十堰市郧阳区聘请政务服务志愿监督员10人模拟试卷附答案详解(模拟题)
- 2025年某单位面向社会公开招聘森林消防队员考前自测高频考点模拟试题及答案详解参考
- 班组岗前安全教育培训课件
- 2025黑龙江哈尔滨工程大学哈军工纪念馆宣讲员招聘1人考前自测高频考点模拟试题及一套答案详解
- 2025贵阳学院人才引进15人考前自测高频考点模拟试题及答案详解(历年真题)
- 2025年湖南财盛国际贸易有限公司公开考前自测高频考点模拟试题附答案详解(考试直接用)
- 班组安全教育培训机制课件
- 2025南平延平塔前镇卫生院招聘医师模拟试卷含答案详解
- 消防员心理测试题库及答案解析
- 2025小升初租房合同模板
- 放射科造影剂过敏反应应急处理预案
- 《大嘴巴纸玩偶》名师课件
- 2025年上海市高考英语热点复习:阅读理解说明文
- 国家管网集团合同范本
- 中医全科学科
- Unit 1 Teenage life单词变形-学生背诵与默写清单-2024-2025学年高中英语人教版(2019)必修第一册
- 铁路技术规章:018铁路军事运输管理办法
- 生物发酵安全培训
- 2024-2025学年广东省深圳市九年级上学期期中数学试题及答案
评论
0/150
提交评论