




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷台前县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有( )A27种B35种C29种D125种2 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A BC. D3 常用以下方法求函数y=f(x)g(x)的导数:先两边同取以e为底的对数(e2.71828,为自然对数的底数)得lny=g(x)lnf(x),再两边同时求导,得y=g(x)lnf(x)+g(x)lnf(x),即y=f(x)g(x)g(x)lnf(x)+g(x)lnf(x)运用此方法可以求函数h(x)=xx(x0)的导函数据此可以判断下列各函数值中最小的是( )Ah()Bh()Ch()Dh()4 设有直线m、n和平面、,下列四个命题中,正确的是( )A若m,n,则mnB若m,n,m,n,则C若,m,则mD若,m,m,则m5 三个实数a、b、c成等比数列,且a+b+c=6,则b的取值范围是( )A6,2B6,0)( 0,2C2,0)( 0,6D(0,26 设等比数列an的公比q=2,前n项和为Sn,则=( )A2B4CD7 底面为矩形的四棱锥PABCD的顶点都在球O的表面上,且O在底面ABCD内,PO平面ABCD,当四棱锥PABCD的体积的最大值为18时,球O的表面积为( )A36 B48C60 D728 一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P,直线PF1(F1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )ABCD9 抛物线y=x2的焦点坐标为( )A(0,)B(,0)C(0,4)D(0,2)10已知直线 平面,直线平面,则( ) A B与异面 C与相交 D与无公共点11集合,则,的关系( )A B C D12若f(x)=x22x4lnx,则f(x)0的解集为( )A(0,+)B(1,0)(2,+)C(2,+)D(1,0)二、填空题13设m是实数,若xR时,不等式|xm|x1|1恒成立,则m的取值范围是14在ABC中,点D在边AB上,CDBC,AC=5,CD=5,BD=2AD,则AD的长为15将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最小值是16在中,为的中点,则的长为_.17函数的定义域是,则函数的定义域是_.11118在ABC中,a,b,c分别是角A,B,C的对边,若6a=4b=3c,则cosB=三、解答题19本小题满分12分 设函数讨论的导函数零点个数;证明:当时, 20对于定义域为D的函数y=f(x),如果存在区间m,nD,同时满足:f(x)在m,n内是单调函数;当定义域是m,n时,f(x)的值域也是m,n则称m,n是该函数的“和谐区间”(1)证明:0,1是函数y=f(x)=x2的一个“和谐区间”(2)求证:函数不存在“和谐区间”(3)已知:函数(aR,a0)有“和谐区间”m,n,当a变化时,求出nm的最大值 21(本小题满分12分)设f(x)x2axa2ln x(a0)(1)讨论f(x)的单调性;(2)是否存在a0,使f(x)e1,e2对于x1,e时恒成立,若存在求出a的值,若不存在说明理由22设函数f(x)=mx2mx1(1)若对一切实数x,f(x)0恒成立,求m的取值范围;(2)对于x1,3,f(x)m+5恒成立,求m的取值范围 23设函数f(x)=lg(axbx),且f(1)=lg2,f(2)=lg12(1)求a,b的值(2)当x1,2时,求f(x)的最大值(3)m为何值时,函数g(x)=ax的图象与h(x)=bxm的图象恒有两个交点 24某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x(个)2345加工的时间y(小时)2.5344.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程=x+,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:回归直线=bx+a,其中b=,a=b台前县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】 B【解析】排列、组合及简单计数问题【专题】计算题【分析】根据题意,可将7台型号相同的健身设备看成是相同的元素,首先分给甲、乙两个社区各台设备,再将余下的三台设备任意分给五个社区,分三种情况讨论分配方案,当三台设备都给一个社区,当三台设备分为1和2两份分给2个社区,当三台设备按1、1、1分成三份时分给三个社区,分别求出其分配方案数目,将其相加即可得答案【解答】解:根据题意,7台型号相同的健身设备是相同的元素,首先要满足甲、乙两个社区至少2台,可以先分给甲、乙两个社区各2台设备,余下的三台设备任意分给五个社区,分三种情况讨论:当三台设备都给一个社区时,有5种结果,当三台设备分为1和2两份分给2个社区时,有2C52=20种结果,当三台设备按1、1、1分成三份时分给三个社区时,有C53=10种结果,不同的分配方案有5+20+10=35种结果;故选B【点评】本题考查分类计数原理,注意分类时做到不重不漏,其次注意型号相同的健身设备是相同的元素2 【答案】A【解析】试题分析:利用余弦定理求出正方形面积;利用三角形知识得出四个等腰三角形面积;故八边形面积.故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式求出个三角形的面积;接下来利用余弦定理可求出正方形的边长的平方,进而得到正方形的面积,最后得到答案.3 【答案】B【解析】解:(h(x)=xxxlnx+x(lnx)=xx(lnx+1),令h(x)0,解得:x,令h(x)0,解得:0x,h(x)在(0,)递减,在(,+)递增,h()最小,故选:B【点评】本题考查函数的导数的应用,极值的求法,基本知识的考查4 【答案】D【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;故选:D5 【答案】B【解析】解:设此等比数列的公比为q,a+b+c=6,=6,b=当q0时, =2,当且仅当q=1时取等号,此时b(0,2;当q0时,b=6,当且仅当q=1时取等号,此时b6,0)b的取值范围是6,0)( 0,2故选:B【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题6 【答案】C【解析】解:由于q=2,;故选:C7 【答案】【解析】选A.设球O的半径为R,矩形ABCD的长,宽分别为a,b,则有a2b24R22ab,ab2R2,又V四棱锥PABCDS矩形ABCDPOabRR3.R318,则R3,球O的表面积为S4R236,选A.8 【答案】D【解析】解:设F2为椭圆的右焦点由题意可得:圆与椭圆交于P,并且直线PF1(F1为椭圆的左焦点)是该圆的切线,所以点P是切点,所以PF2=c并且PF1PF2又因为F1F2=2c,所以PF1F2=30,所以根据椭圆的定义可得|PF1|+|PF2|=2a,所以|PF2|=2ac所以2ac=,所以e=故选D【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义9 【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,焦点坐标为(0,2)故选:D【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键10【答案】D【解析】试题分析:因为直线 平面,直线平面,所以或与异面,故选D.考点:平面的基本性质及推论.11【答案】A【解析】试题分析:通过列举可知,所以.考点:两个集合相等、子集112【答案】C【解析】解:由题,f(x)的定义域为(0,+),f(x)=2x2,令2x20,整理得x2x20,解得x2或x1,结合函数的定义域知,f(x)0的解集为(2,+)故选:C二、填空题13【答案】0,2 【解析】解:|xm|x1|(xm)(x1)|=|m1|,故由不等式|xm|x1|1恒成立,可得|m1|1,1m11,求得0m2,故答案为:0,2【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于基础题14【答案】5 【解析】解:如图所示:延长BC,过A做AEBC,垂足为E,CDBC,CDAE,CD=5,BD=2AD,解得AE=,在RTACE,CE=,由得BC=2CE=5,在RTBCD中,BD=10,则AD=5,故答案为:5【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题15【答案】 【解析】解:设剪成的小正三角形的边长为x,则:S=,(0x1)令3x=t,t(2,3),S=,当且仅当t=即t=2时等号成立;故答案为:16【答案】【解析】 考点:1、正弦定理及勾股定理;2诱导公式及直角三角形的性质.【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可, 对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等).17【答案】【解析】考点:函数的定义域.18【答案】 【解析】解:在ABC中,6a=4b=3cb=,c=2a,由余弦定理可得cosB=故答案为:【点评】本题考查余弦定理在解三角形中的应用,用a表示b,c是解决问题的关键,属于基础题三、解答题19【答案】【解析】:,因为定义域为, 有解 即有解. 令,当所以,当时,无零点; 当时,有唯一零点.由可知,当时,设在上唯一零点为,当,在为增函数;当,在为减函数.20【答案】 【解析】解:(1)y=x2在区间0,1上单调递增又f(0)=0,f(1)=1,值域为0,1,区间0,1是y=f(x)=x2的一个“和谐区间”(2)设m,n是已知函数定义域的子集x0,m,n(,0)或m,n(0,+),故函数在m,n上单调递增若m,n是已知函数的“和谐区间”,则故m、n是方程的同号的相异实数根x23x+5=0无实数根,函数不存在“和谐区间”(3)设m,n是已知函数定义域的子集x0,m,n(,0)或m,n(0,+),故函数在m,n上单调递增若m,n是已知函数的“和谐区间”,则故m、n是方程,即a2x2(a2+a)x+1=0的同号的相异实数根,m,n同号,只须=a2(a+3)(a1)0,即a1或a3时,已知函数有“和谐区间”m,n,当a=3时,nm取最大值 21【答案】【解析】解:(1)f(x)x2axa2ln x的定义域为x|x0,f(x)2xa.当a0时,由f(x)0得x,由f(x)0得0x.此时f(x)在(0,)上单调递增,在(,)上单调递减;当a0时,由f(x)0得xa,由f(x)0得0xa,此时f(x)在(0,a)上单调递增,在(a,)上单调递减(2)假设存在满足条件的实数a,x1,e时,f(x)e1,e2,f(1)1ae1,即ae,由(1)知f(x)在(0,a)上单调递增,f(x)在1,e上单调递增,f(e)e2aee2e2,即ae,由可得ae,故存在ae,满足条件 22【答案】 【解析】解:(1)当m=0时,f(x)=10恒成立,当m0时,若f(x)0恒成立,则解得4m0综上所述m的取值范围为(4,0(2)要x1,3,f(x)m+5恒成立,即恒成立令当 m0时,g(x)是增函数,所以g(x)max=g(3)=7m60,解得所以当m=0时,60恒成立当m0时,g(x)是减函数所以g(x)max=g(1)=m60,解得m6所以m0综上所述,【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键23【答案】 【解析】解:(1)f(x)=lg(axbx),且f(1)=lg2,f(2)=lg12,ab=2,a2b2=12,解得:a=4,b=2;(2)由(1)得:函数f(x)=lg(4x2x),当x1,2时,4x2x2,12,故当x=2时,函数f(x)取最大值lg12,(3)若函数g(x)=ax的图象与h(x)=bxm的图象恒有两个交点则4x2x=m有两个解,令t=2x,则t0,则t2t=m有两个正解;则,解得:m(,0)【点评】本题考查的知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合伙企业资本变更合同主要条款解析
- 塑料回收产业链可行性分析报告
- 2025年盘锦市大洼区人民医院面向社会招聘合同制工作人员(49)模拟试卷及一套完整答案详解
- 电力工程施工技术总结报告
- 物理教学评课稿范文汇编
- 高层建筑施工安全管理实践报告
- 外贸业务基础知识全解析
- 食品加工车间清洁消毒标准操作规程
- 项目验收报告编写指导手册
- 办公室文秘工作规范与标准流程
- 外贸客户验收设备报告工厂测试FATSAT
- 国开电大外国文学形考
- 新《高等教育学》考试复习题库450题(含各题型)
- 产品技术规格书模板
- 幼儿园绘本故事:《排队喽》 课件
- 颈脊髓损伤患者护理查房PPT
- 增员及邀约话术2-2课件
- 会计凭证考试试题
- 《冷冲压工艺与模具设计》完整版ppt课件全套教程
- 高中英语 选必B1 Unit2 Onwards and upwards 第4课时-Developing ideas 课件
- 自采商品管理流程
评论
0/150
提交评论