




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷平山县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知平面向量=(1,2),=(2,m),且,则=( )A(5,10)B(4,8)C(3,6)D(2,4)2 已知f(x)=ax3+bx+1(ab0),若f(2016)=k,则f(2016)=( )AkBkC1kD2k3 一个四边形的斜二侧直观图是一个底角为45,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( )A2+B1+CD4 已知定义在R上的函数f(x)满足f(x)=,且f(x)=f(x+2),g(x)=,则方程g(x)=f(x)g(x)在区间3,7上的所有零点之和为( )A12B11C10D95 已知角的终边上有一点P(1,3),则的值为( )ABCD46 若则的值为( ) A8 B C2 D 7 在ABC中,内角A,B,C所对的边分别为a,b,c,已知a=3,A=60,则满足条件的三角形个数为( )A0B1C2D以上都不对8 设等比数列an的公比q=2,前n项和为Sn,则=( )A2B4CD9 设函数f(x)=,则f(1)=( )A0B1C2D310设集合M=(x,y)|x2+y2=1,xR,yR,N=(x,y)|x2y=0,xR,yR,则集合MN中元素的个数为( )A1B2C3D411“1x2”是“x2”成立的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件12函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是( )Aa0,b0,c0,d0Ba0,b0,c0,d0Ca0,b0,c0,d0Da0,b0,c0,d0二、填空题13已知f(x+1)=f(x1),f(x)=f(2x),方程f(x)=0在0,1内只有一个根x=,则f(x)=0在区间0,2016内根的个数14若函数在区间上单调递增,则实数的取值范围是_.15定义在上的函数满足:,则不等式(其中为自然对数的底数)的解集为 .16已知数列an满足an+1=e+an(nN*,e=2.71828)且a3=4e,则a2015=17设p:f(x)=ex+lnx+2x2+mx+1在(0,+)上单调递增,q:m5,则p是q的条件18i是虚数单位,若复数(12i)(a+i)是纯虚数,则实数a的值为三、解答题19如图,过抛物线C:x2=2py(p0)的焦点F的直线交C于M(x1,y1),N(x2,y2)两点,且x1x2=4()p的值;()R,Q是C上的两动点,R,Q的纵坐标之和为1,RQ的垂直平分线交y轴于点T,求MNT的面积的最小值20已知函数f(x)=x1+(aR,e为自然对数的底数)()若曲线y=f(x)在点(1,f(1)处的切线平行于x轴,求a的值;()求函数f(x)的极值;()当a=1的值时,若直线l:y=kx1与曲线y=f(x)没有公共点,求k的最大值 21已知函数f(x)=alnxx(a0)()求函数f(x)的最大值;()若x(0,a),证明:f(a+x)f(ax);()若,(0,+),f()=f(),且,证明:+222(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在岁间,旅游途中导游发现该旅游散团人人都会使用微信,所有团员的年龄结构按分成5组,分别记为,其频率分布直方图如下图所示()根据频率分布直方图,估计该旅游散团团员的平均年龄;()该团导游首先在三组中用分层抽样的方法抽取了名团员负责全团协调,然后从这6名团员中随机选出2名团员为主要协调负责人,求选出的2名团员均来自组的概率23在平面直角坐标系中,矩阵M对应的变换将平面上任意一点P(x,y)变换为点P(2x+y,3x)()求矩阵M的逆矩阵M1;()求曲线4x+y1=0在矩阵M的变换作用后得到的曲线C的方程 24如图,在四棱锥OABCD中,底面ABCD四边长为1的菱形,ABC=,OA底面ABCD,OA=2,M为OA的中点,N为BC的中点()证明:直线MN平面OCD;()求异面直线AB与MD所成角的大小;()求点B到平面OCD的距离 平山县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:排除法:横坐标为2+(6)=4,故选B2 【答案】D【解析】解:f(x)=ax3+bx+1(ab0),f(2016)=k,f(2016)=20163a+2016b+1=k,20163a+2016b=k1,f(2016)=20163a2016b+1=(k1)+1=2k故选:D【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用3 【答案】A【解析】解:四边形的斜二侧直观图是一个底角为45,腰和上底的长均为1的等腰梯形,原四边形为直角梯形,且CD=CD=1,AB=OB=,高AD=20D=2,直角梯形ABCD的面积为,故选:A4 【答案】B【解析】解:f(x)=f(x+2),函数f(x)为周期为2的周期函数,函数g(x)=,其图象关于点(2,3)对称,如图,函数f(x)的图象也关于点(2,3)对称,函数f(x)与g(x)在3,7上的交点也关于(2,3)对称,设A,B,C,D的横坐标分别为a,b,c,d,则a+d=4,b+c=4,由图象知另一交点横坐标为3,故两图象在3,7上的交点的横坐标之和为4+4+3=11,即函数y=f(x)g(x)在3,7上的所有零点之和为11故选:B【点评】本题考查函数的周期性,函数的零点的概念,以及数形结合的思想方法属于中档题5 【答案】A【解析】解:点P(1,3)在终边上,tan=3,=故选:A6 【答案】B【解析】试题分析:,故选B。考点:分段函数。7 【答案】B【解析】解:a=3,A=60,由正弦定理可得:sinB=1,B=90,即满足条件的三角形个数为1个故选:B【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题8 【答案】C【解析】解:由于q=2,;故选:C9 【答案】D【解析】解:f(x)=,f(1)=ff(7)=f(5)=3故选:D10【答案】B【解析】解:根据题意,MN=(x,y)|x2+y2=1,xR,yR(x,y)|x2y=0,xR,yR(x,y)|将x2y=0代入x2+y2=1,得y2+y1=0,=50,所以方程组有两组解,因此集合MN中元素的个数为2个,故选B【点评】本题既是交集运算,又是函数图形求交点个数问题11【答案】A【解析】解:设A=x|1x2,B=x|x2,AB,故“1x2”是“x2”成立的充分不必要条件故选A【点评】本题考查的知识点是必要条件,充分条件与充要条件判断,其中熟练掌握集合法判断充要条件的原则“谁小谁充分,谁大谁必要”,是解答本题的关键12【答案】A【解析】解:f(0)=d0,排除D,当x+时,y+,a0,排除C,函数的导数f(x)=3ax2+2bx+c,则f(x)=0有两个不同的正实根,则x1+x2=0且x1x2=0,(a0),b0,c0,方法2:f(x)=3ax2+2bx+c,由图象知当当xx1时函数递增,当x1xx2时函数递减,则f(x)对应的图象开口向上,则a0,且x1+x2=0且x1x2=0,(a0),b0,c0,故选:A二、填空题13【答案】2016 【解析】解:f(x)=f(2x),f(x)的图象关于直线x=1对称,即f(1x)=f(1+x)f(x+1)=f(x1),f(x+2)=f(x),即函数f(x)是周期为2的周期函数,方程f(x)=0在0,1内只有一个根x=,由对称性得,f()=f()=0,函数f(x)在一个周期0,2上有2个零点,即函数f(x)在每两个整数之间都有一个零点,f(x)=0在区间0,2016内根的个数为2016,故答案为:201614【答案】【解析】试题分析:因为在区间上单调递增,所以时,恒成立,即恒成立,可得,故答案为.1考点:1、利用导数研究函数的单调性;2、不等式恒成立问题.15【答案】【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得,结合要求的不等式可知在不等式两边同时乘以,即,因此构造函数,求导利用函数的单调性解不等式.另外本题也可以构造满足前提的特殊函数,比如令也可以求解.116【答案】2016 【解析】解:由an+1=e+an,得an+1an=e,数列an是以e为公差的等差数列,则a1=a32e=4e2e=2e,a2015=a1+2014e=2e+2014e=2016e故答案为:2016e【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题17【答案】必要不充分 【解析】解:由题意得f(x)=ex+4x+m,f(x)=ex+lnx+2x2+mx+1在(0,+)内单调递增,f(x)0,即ex+4x+m0在定义域内恒成立,由于+4x4,当且仅当=4x,即x=时等号成立,故对任意的x(0,+),必有ex+4x5mex4x不能得出m5但当m5时,必有ex+4x+m0成立,即f(x)0在x(0,+)上成立p不是q的充分条件,p是q的必要条件,即p是q的必要不充分条件故答案为:必要不充分18【答案】2 【解析】解:由(12i)(a+i)=(a+2)+(12a)i为纯虚数,得,解得:a=2故答案为:2三、解答题19【答案】 【解析】解:()由题意设MN:y=kx+,由,消去y得,x22pkxp2=0(*)由题设,x1,x2是方程(*)的两实根,故p=2;()设R(x3,y3),Q(x4,y4),T(0,t),T在RQ的垂直平分线上,|TR|=|TQ|得,又,即4(y3y4)=(y3+y42t)(y4y3)而y3y4,4=y3+y42t又y3+y4=1,故T(0,)因此,由()得,x1+x2=4k,x1x2=4,=因此,当k=0时,SMNT有最小值3【点评】本题考查抛物线方程的求法,考查了直线和圆锥曲线间的关系,着重考查“舍而不求”的解题思想方法,考查了计算能力,是中档题20【答案】 【解析】解:()由f(x)=x1+,得f(x)=1,又曲线y=f(x)在点(1,f(1)处的切线平行于x轴,f(1)=0,即1=0,解得a=e()f(x)=1,当a0时,f(x)0,f(x)为(,+)上的增函数,所以f(x)无极值;当a0时,令f(x)=0,得ex=a,x=lna,x(,lna),f(x)0;x(lna,+),f(x)0;f(x)在(,lna)上单调递减,在(lna,+)上单调递增,故f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值综上,当a0时,f(x)无极值;当a0时,f(x)在x=lna处取到极小值lna,无极大值()当a=1时,f(x)=x1+,令g(x)=f(x)(kx1)=(1k)x+,则直线l:y=kx1与曲线y=f(x)没有公共点,等价于方程g(x)=0在R上没有实数解假设k1,此时g(0)=10,g()=1+0,又函数g(x)的图象连续不断,由零点存在定理可知g(x)=0在R上至少有一解,与“方程g(x)=0在R上没有实数解”矛盾,故k1又k=1时,g(x)=0,知方程g(x)=0在R上没有实数解,所以k的最大值为1 21【答案】 【解析】解:()令,所以x=a易知,x(0,a)时,f(x)0,x(a,+)时,f(x)0故函数f(x)在(0,a)上递增,在(a,+)递减故f(x)max=f(a)=alnaa()令g(x)=f(ax)f(a+x),即g(x)=aln(ax)aln(a+x)+2x所以,当x(0,a)时,g(x)0所以g(x)g(0)=0,即f(a+x)f(ax)()依题意得:a,从而a(0,a)由()知,f(2a)=fa+(a)fa(a)=f()=f()又2aa,a所以2a,即+2a【点评】本题考查了利用导数证明不等式的问题,一般是转化为函数的最值问题来解,注意导数的应用22【答案】【解析】【命题意图】本题考查频率分布直方图与平均数、分层抽样、古典概型等基础知识,意在考查审读能力、识图能力、获取数据信息的能力23【答案】 【解析】解:()设点P(x,y)在矩阵M对应的变换作用下所得的点为P(x,y),则即=,M=又det(M)=3,M1=;()设点A(x,y)在矩阵M对应的变换作用下所得的点为A(x,y),则=M1=,即,代入4x+y1=0,得,即变换后的曲线方程为x+2y+1=0【点评】本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题 24【答案】【解析】解:方法一(综合法)(1)取OB中点E,连接ME,NEMEAB,ABCD,MECD又NEOC,平面MNE平面OCDMN平面OCD(2)CDAB,MDC为异面直线AB与MD所成的角(或其补角)作APCD于P,连接MPOA平面ABCD,CDMP,所以AB与MD所成角的大小为(3)AB平面OCD,点A和点B到平面OCD的距离相等,连接OP,过点A作AQOP于点Q,APCD,OACD,CD平面OAP,AQCD又AQOP,AQ平面OCD,线段AQ的长就是点A到平面OCD的距离,所以点B到平面OCD的距离为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 供电产权分界协议书范本
- 高端别墅折叠门定制采购合同模板
- 粤式茶餐厅区域加盟代理经营协议
- 精准匹配车贷需求居间服务合同样本
- 住宅小区拆迁补偿及重建工程承包协议
- 采矿权抵押贷款合同范本及风险评估协议
- 节能减排教育实施路径
- 电梯乘坐安全教育
- 余氯测定方法培训
- 智慧停车解决方案
- 内科胸腔镜风险处置预案
- SL345-2007水利水电工程注水试验规程
- qc技术主管述职报告
- 护患沟通及纠纷防范
- 人工动静脉瘘狭窄查房
- PTBD管路维护技术
- 高压灭菌器应急预案
- 环卫车辆交通安全知识讲座
- 学生顶岗实习成绩考核表
- NB-T 47013.15-2021 承压设备无损检测 第15部分:相控阵超声检测
- 保安报名表和资格审查表
评论
0/150
提交评论