青山区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
青山区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
青山区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
青山区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
青山区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

青山区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 常用以下方法求函数y=f(x)g(x)的导数:先两边同取以e为底的对数(e2.71828,为自然对数的底数)得lny=g(x)lnf(x),再两边同时求导,得y=g(x)lnf(x)+g(x)lnf(x),即y=f(x)g(x)g(x)lnf(x)+g(x)lnf(x)运用此方法可以求函数h(x)=xx(x0)的导函数据此可以判断下列各函数值中最小的是( )Ah()Bh()Ch()Dh()2 在下列区间中,函数f(x)=()xx的零点所在的区间为( )A(0,1)B(1,2)C(2,3 )D(3,4)3 已知f(x)在R上是奇函数,且f(x+4)=f(x),当x(0,2)时,f(x)=2x2,则f(7)=( )A2B2C98D984 两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20,灯塔B在观察站C的南偏东40,则灯塔A与灯塔B的距离为( )AakmB akmC2akmD akm5 已知命题且是单调增函数;命题,.则下列命题为真命题的是( )A B C. D6 下列图象中,不能作为函数y=f(x)的图象的是( )ABCD7 已知函数f(x)=lnx+2x6,则它的零点所在的区间为( )A(0,1)B(1,2)C(2,3)D(3,4)8 若P是以F1,F2为焦点的椭圆=1(ab0)上的一点,且=0,tanPF1F2=,则此椭圆的离心率为( )ABCD 9 已知x,y满足时,z=xy的最大值为( )A4B4C0D210下列命题的说法错误的是( )A若复合命题pq为假命题,则p,q都是假命题B“x=1”是“x23x+2=0”的充分不必要条件C对于命题p:xR,x2+x+10 则p:xR,x2+x+10D命题“若x23x+2=0,则x=1”的逆否命题为:“若x1,则x23x+20”11函数y=的图象大致是( )ABCD12下列函数中,为奇函数的是( )Ay=x+1By=x2Cy=2xDy=x|x|二、填空题13直线与抛物线交于,两点,且与轴负半轴相交,若为坐标原点,则面积的最大值为 .【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.14已知椭圆中心在原点,一个焦点为F(2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是15设为锐角,若sin()=,则cos2=16已知函数f(x)的定义域为1,5,部分对应值如下表,f(x)的导函数y=f(x)的图象如图示 x1045f(x)1221下列关于f(x)的命题:函数f(x)的极大值点为0,4;函数f(x)在0,2上是减函数;如果当x1,t时,f(x)的最大值是2,那么t的最大值为4;当1a2时,函数y=f(x)a有4个零点;函数y=f(x)a的零点个数可能为0、1、2、3、4个其中正确命题的序号是17有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是_元18如图,在平行四边形ABCD中,点E在边CD上,若在平行四边形ABCD内部随机取一个点Q,则点Q取自ABE内部的概率是三、解答题19(本小题满分12分)已知分别是椭圆:的两个焦点,是椭圆上一点,且成等差数列(1)求椭圆的标准方程;、(2)已知动直线过点,且与椭圆交于两点,试问轴上是否存在定点,使得恒成立?若存在,求出点的坐标;若不存在,请说明理由20设函数f(x)=emx+x2mx(1)证明:f(x)在(,0)单调递减,在(0,+)单调递增;(2)若对于任意x1,x2,都有|f(x1)f(x2)|e1,求m的取值范围 21函数f(x)是R上的奇函数,且当x0时,函数的解析式为f(x)=1(1)用定义证明f(x)在(0,+)上是减函数;(2)求函数f(x)的解析式22已知数列an的前n项和为Sn,a1=3,且2Sn=an+1+2n(1)求a2;(2)求数列an的通项公式an;(3)令bn=(2n1)(an1),求数列bn的前n项和Tn 23设函数f(x)=x2ex(1)求f(x)的单调区间;(2)若当x2,2时,不等式f(x)m恒成立,求实数m的取值范围24(本小题满分10分)如图O经过ABC的点B,C与AB交于E,与AC交于F,且AEAF.(1)求证EFBC;(2)过E作O的切线交AC于D,若B60,EBEF2,求ED的长青山区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:(h(x)=xxxlnx+x(lnx)=xx(lnx+1),令h(x)0,解得:x,令h(x)0,解得:0x,h(x)在(0,)递减,在(,+)递增,h()最小,故选:B【点评】本题考查函数的导数的应用,极值的求法,基本知识的考查2 【答案】A【解析】解:函数f(x)=()xx,可得f(0)=10,f(1)=0f(2)=0,函数的零点在(0,1)故选:A3 【答案】A【解析】解:因为f(x+4)=f(x),故函数的周期是4所以f(7)=f(3)=f(1),又f(x)在R上是奇函数,所以f(1)=f(1)=212=2,故选A【点评】本题考查函数的奇偶性与周期性4 【答案】D【解析】解:根据题意,ABC中,ACB=1802040=120,AC=BC=akm,由余弦定理,得cos120=,解之得AB=akm,即灯塔A与灯塔B的距离为akm,故选:D【点评】本题给出实际应用问题,求海洋上灯塔A与灯塔B的距离着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题5 【答案】D 【解析】考点:1、指数函数与三角函数的性质;2、真值表的应用.6 【答案】B【解析】解:根据函数的定义可知,对应定义域内的任意变量x只能有唯一的y与x对应,选项B中,当x0时,有两个不同的y和x对应,所以不满足y值的唯一性所以B不能作为函数图象故选B【点评】本题主要考查函数图象的识别,利用函数的定义是解决本题的关键,注意函数的三个条件:非空数集,定义域内x的任意性,x对应y值的唯一性7 【答案】C【解析】解:易知函数f(x)=lnx+2x6,在定义域R+上单调递增因为当x0时,f(x);f(1)=40;f(2)=ln220;f(3)=ln30;f(4)=ln4+20可见f(2)f(3)0,故函数在(2,3)上有且只有一个零点故选C8 【答案】A【解析】解:,即PF1F2是P为直角顶点的直角三角形RtPF1F2中,=,设PF2=t,则PF1=2t=2c,又根据椭圆的定义,得2a=PF1+PF2=3t此椭圆的离心率为e=故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题9 【答案】A【解析】解:由约束条件作出可行域如图,联立,得A(6,2),化目标函数z=xy为y=xz,由图可知,当直线y=xz过点A时,直线在y轴上的截距最小,z有最大值为4故选:A【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题10【答案】A【解析】解:A复合命题pq为假命题,则p,q至少有一个命题为假命题,因此不正确;B由x23x+2=0,解得x=1,2,因此“x=1”是“x23x+2=0”的充分不必要条件,正确;C对于命题p:xR,x2+x+10 则p:xR,x2+x+10,正确;D命题“若x23x+2=0,则x=1”的逆否命题为:“若x1,则x23x+20”,正确故选:A11【答案】A【解析】解:函数函数的零点呈周期性出现,且法自变量趋向于正无穷大时,函数值在x轴上下震荡,幅度越来越小,而当自变量趋向于负无穷大时,函数值在x轴上下震荡,幅度越来越大,A选项符合题意;B选项振幅变化规律与函数的性质相悖,不正确;C选项是一个偶函数的图象,而已知的函数不是一个偶函数故不正确;D选项最高点离开原点的距离的变化趋势不符合题意,故不对综上,A选项符合题意故选A12【答案】D【解析】解:由于y=x+1为非奇非偶函数,故排除A;由于y=x2为偶函数,故排除B;由于y=2x为非奇非偶函数,故排除C;由于y=x|x|是奇函数,满足条件,故选:D【点评】本题主要考查函数的奇偶性的判断,属于基础题二、填空题13【答案】【解析】14【答案】 【解析】解:已知为所求;故答案为:【点评】本题主要考查椭圆的标准方程属基础题15【答案】 【解析】解:为锐角,若sin()=,cos()=,sin= sin()+cos()=,cos2=12sin2=故答案为:【点评】本题主要考查了同角三角函数关系式,二倍角的余弦函数公式的应用,属于基础题16【答案】 【解析】解:由导数图象可知,当1x0或2x4时,f(x)0,函数单调递增,当0x2或4x5,f(x)0,函数单调递减,当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2),所以正确;正确;因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x1,t函数f(x)的最大值是4,当2t5,所以t的最大值为5,所以不正确;由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)a有几个零点,所以不正确,根据函数的单调性和极值,做出函数的图象如图,(线段只代表单调性),根据题意函数的极小值不确定,分f(2)1或1f(2)2两种情况,由图象知,函数y=f(x)和y=a的交点个数有0,1,2,3,4等不同情形,所以正确,综上正确的命题序号为故答案为:【点评】本题考查导数知识的运用,考查导函数与原函数图象之间的关系,正确运用导函数图象是关键17【答案】1464【解析】【知识点】函数模型及其应用【试题解析】显然,面积大的房间用费用低的涂料,所以房间A用涂料1,房间B用涂料3,房间C用涂料2,即最低的涂料总费用是元。故答案为:146418【答案】 【解析】解:由题意ABE的面积是平行四边形ABCD的一半,由几何概型的计算方法,可以得出所求事件的概率为P=,故答案为:【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题三、解答题19【答案】【解析】【命题意图】本题考查椭圆的定义及方程、直线与椭圆的位置关系、平面向量数量积等基础知识,意在考查学生逻辑思维能力、运算求解能力、探索能力,以及分类讨论思想、待定系数法、设而不求法的应用下面证明时,恒成立当直线的斜率为0时,结论成立;当直线的斜率不为0时,设直线的方程为,由及,得,所以,=综上所述,在轴上存在点使得恒成立20【答案】 【解析】解:(1)证明:f(x)=m(emx1)+2x若m0,则当x(,0)时,emx10,f(x)0;当x(0,+)时,emx10,f(x)0若m0,则当x(,0)时,emx10,f(x)0;当x(0,+)时,emx10,f(x)0所以,f(x)在(,0)时单调递减,在(0,+)单调递增(2)由(1)知,对任意的m,f(x)在单调递减,在单调递增,故f(x)在x=0处取得最小值所以对于任意x1,x2,|f(x1)f(x2)|e1的充要条件是即设函数g(t)=ette+1,则g(t)=et1当t0时,g(t)0;当t0时,g(t)0故g(t)在(,0)单调递减,在(0,+)单调递增又g(1)=0,g(1)=e1+2e0,故当t时,g(t)0当m时,g(m)0,g(m)0,即合式成立;当m1时,由g(t)的单调性,g(m)0,即emme1当m1时,g(m)0,即em+me1综上,m的取值范围是 21【答案】 【解析】(1)证明:设x2x10,f(x1)f(x2)=(1)(1)=,由题设可得x2x10,且x2x10,f(x1)f(x2)0,即f(x1)f(x2),故f(x)在(0,+)上是减函数(2)当x0时,x0,f(x)=1=f(x),f(x)=+1又f(0)=0,故函数f(x)的解析式为f(x)=22【答案】 【解析】解:(1)当n=1时,2S1=2a1=a2+2,a2=41;(2)当n2时,2an=2sn2sn1=an+1+2nan2(n1)=an+1an+2,an+1=3an2,an+11=3(an1)4,an1从第二项起是公比为3的等比数列5,;(3)89得:,=,=(22n)3n4,1112【点评】本题考查等比数列的通项公式,数列的递推公式,考查“错位相减法”求数列的前n项和,考查计算能力,属于中档题23【答案】 【解析】解:(1)令f(x)的单增区间为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论