




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷甘德县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知函数f(x)=log2x,在下列区间中,包含f(x)零点的区间是( )A(0,1)B(1,2)C(2,4)D(4,+)2 已知点P(1,),则它的极坐标是( )ABCD3 方程表示的曲线是( )A一个圆 B 两个半圆 C两个圆 D半圆4 下列函数中,既是偶函数,又在区间(0,+)上单调递减的是( )ABy=x2Cy=x|x|Dy=x25 设集合A1,2,3,B4,5,Mx|xab,aA,bB,则M中元素的个数为()。A3B4C5D66 已知a=21.2,b=()0.8,c=2log52,则a,b,c的大小关系为( )AcbaBcabCbacDbca7 已知向量=(1,n),=(1,n2),若与共线则n等于( )A1BC2D48 曲线y=在点(1,1)处的切线方程为( )Ay=x2By=3x+2Cy=2x3Dy=2x+19 某几何体的三视图如图所示,该几何体的体积是( )ABCD10已知=(2,3,1),=(4,2,x),且,则实数x的值是( )A2B2CD11已知函数与轴的交点为,且图像上两对称轴之间的最小距离为,则使成立的的最小值为( )1111A B C D12已知集合A=x|x2x20,B=x|1x1,则( )AABBBACA=BDAB=二、填空题13已知函数f(x)=x3ax2+3x在x1,+)上是增函数,求实数a的取值范围14如图:直三棱柱ABCABC的体积为V,点P、Q分别在侧棱AA和CC上,AP=CQ,则四棱锥BAPQC的体积为15设全集U=R,集合M=x|2a1x4a,aR,N=x|1x2,若NM,则实数a的取值范围是16抛物线y2=8x上到焦点距离等于6的点的坐标是17已知函数的三个零点成等比数列,则 .18对于集合M,定义函数对于两个集合A,B,定义集合AB=x|fA(x)fB(x)=1已知A=2,4,6,8,10,B=1,2,4,8,12,则用列举法写出集合AB的结果为三、解答题19如图,矩形ABCD和梯形BEFC所在平面互相垂直,BECF,BCCF,EF=2,BE=3,CF=4()求证:EF平面DCE;()当AB的长为何值时,二面角AEFC的大小为6020已知一个几何体的三视图如图所示()求此几何体的表面积;()在如图的正视图中,如果点A为所在线段中点,点B为顶点,求在几何体侧面上从点A到点B的最短路径的长21(本题满分12分)在长方体中,是棱上的一点,是棱上的一点.(1)求证:平面;(2)求证:;(3)若是棱的中点,是棱的中点,求证:平面.22在直角坐标系xOy中,过点P(2,1)的直线l的倾斜角为45以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为sin2=4cos,直线l和曲线C的交点为A,B(1)求曲线C的直角坐标方程; (2)求|PA|PB| 23已知奇函数f(x)=(cR)()求c的值;()当x2,+)时,求f(x)的最小值24(本小题满分14分)设函数,(其中,).(1)若,求的单调区间;(2)若,讨论函数在上零点的个数.【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.甘德县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:f(x)=log2x,f(2)=20,f(4)=0,满足f(2)f(4)0,f(x)在区间(2,4)内必有零点,故选:C2 【答案】C【解析】解:点P的直角坐标为,=2再由1=cos, =sin,可得,结合所给的选项,可取=,即点P的极坐标为 (2,),故选 C【点评】本题主要考查把点的直角坐标化为极坐标的方法,属于基础题3 【答案】A【解析】试题分析:由方程,两边平方得,即,所以方程表示的轨迹为一个圆,故选A.考点:曲线的方程.4 【答案】D【解析】解:函数为非奇非偶函数,不满足条件;函数y=x2为偶函数,但在区间(0,+)上单调递增,不满足条件;函数y=x|x|为奇函数,不满足条件;函数y=x2为偶函数,在区间(0,+)上单调递减,满足条件;故选:D【点评】本题考查的知识点是函数的单调性与函数的奇偶性,是函数图象和性质的综合应用,难度不大,属于基础题5 【答案】B【解析】由题意知xab,aA,bB,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B6 【答案】A【解析】解:b=()0.8=20.821.2=a,且b1,又c=2log52=log541,cba故选:A7 【答案】A【解析】解:向量=(1,n),=(1,n2),且与共线1(n2)=1n,解之得n=1故选:A8 【答案】D【解析】解:y=()=,k=y|x=1=2l:y+1=2(x1),则y=2x+1故选:D9 【答案】A【解析】解:几何体如图所示,则V=,故选:A【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键10【答案】A【解析】解: =(2,3,1),=(4,2,x),且,=0,86+x=0;x=2;故选A【点评】本题考查向量的数量积判断向量的共线与垂直,解题的关键是将垂直关系转化为两向量的内积为0,建立关于x的方程求出x的值11【答案】A【解析】考点:三角函数的图象性质12【答案】B【解析】解:由题意可得,A=x|1x2,B=x|1x1,在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=BA故选B二、填空题13【答案】(,3 【解析】解:f(x)=3x22ax+3,f(x)在1,+)上是增函数,f(x)在1,+)上恒有f(x)0,即3x22ax+30在1,+)上恒成立则必有1且f(1)=2a+60,a3;实数a的取值范围是(,314【答案】V【解析】【分析】四棱锥BAPQC的体积,底面面积是侧面ACCA的一半,B到侧面的距离是常数,求解即可【解答】解:由于四棱锥BAPQC的底面面积是侧面ACCA的一半,不妨把P移到A,Q移到C,所求四棱锥BAPQC的体积,转化为三棱锥AABC体积,就是:故答案为:15【答案】,1 【解析】解:全集U=R,集合M=x|2a1x4a,aR,N=x|1x2,NM,2a11 且4a2,解得 2a,故实数a的取值范围是,1,故答案为,116【答案】(4,) 【解析】解:抛物线方程为y2=8x,可得2p=8, =2抛物线的焦点为F(2,0),准线为x=2设抛物线上点P(m,n)到焦点F的距离等于6,根据抛物线的定义,得点P到F的距离等于P到准线的距离,即|PF|=m+2=6,解得m=4,n2=8m=32,可得n=4,因此,点P的坐标为(4,)故答案为:(4,)【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标着重考查了抛物线的定义与标准方程等知识,属于基础题17【答案】考点:三角函数的图象与性质,等比数列的性质,对数运算【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题18【答案】1,6,10,12 【解析】解:要使fA(x)fB(x)=1,必有xx|xA且xBx|xB且xA=6,101,12=1,6,10,12,所以AB=1,6,10,12故答案为1,6,10,12【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题三、解答题19【答案】 【解析】证明:()在BCE中,BCCF,BC=AD=,BE=3,EC=,在FCE中,CF2=EF2+CE2,EFCE由已知条件知,DC平面EFCB,DCEF,又DC与EC相交于C,EF平面DCE解:()方法一:过点B作BHEF交FE的延长线于H,连接AH由平面ABCD平面BEFC,平面ABCD平面BEFC=BC,ABBC,得AB平面BEFC,从而AHEF所以AHB为二面角AEFC的平面角在RtCEF中,因为EF=2,CF=4EC=CEF=90,由CEBH,得BHE=90,又在RtBHE中,BE=3,由二面角AEFC的平面角AHB=60,在RtAHB中,解得,所以当时,二面角AEFC的大小为60方法二:如图,以点C为坐标原点,以CB,CF和CD分别作为x轴,y轴和z轴,建立空间直角坐标系Cxyz设AB=a(a0),则C(0,0,0),A(,0,a),B(,0,0),E(,3,0),F(0,4,0)从而,设平面AEF的法向量为,由得,取x=1,则,即,不妨设平面EFCB的法向量为,由条件,得解得所以当时,二面角AEFC的大小为60【点评】本题考查的知识点是用空间向量求平面间的夹角,其中(I)的关键是熟练掌握线线垂直、线面垂直与面面垂直的之间的相互转化,(II)的关键是建立空间坐标系,将二面角问题,转化为向量的夹角问题20【答案】 【解析】解:()由三视图知:几何体是一个圆锥与一个圆柱的组合体,且圆锥与圆柱的底面半径为2,母线长分别为2、4,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和S圆锥侧=222=4;S圆柱侧=224=16;S圆柱底=22=4几何体的表面积S=20+4;()沿A点与B点所在母线剪开圆柱侧面,如图:则AB=2,以从A点到B点在侧面上的最短路径的长为221【答案】【解析】【命题意图】本题综合考查了线面垂直、线线垂直、线面平行等位置关系的证明,对空间想象能力及逻辑推理有较高要求,对于证明中辅助线的运用是一个难点,本题属于中等难度.22【答案】 【解析】(1)sin2=4cos,2sin2=4cos,cos=x,sin=y,曲线C的直角坐标方程为y2=4x (2)直线l过点P(2,1),且倾斜角为45l的参数方程为(t为参数)代入 y2=4x 得t26t14=0设点A,B对应的参数分别t1,t2t1t2=14|PA|PB|=14 23【答案】 【解析】解:()f(x)是奇函数,f(x)=f(x),=,比较系数得:c=c,c=0,f(x)=x+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二年级新班主任发言稿
- 时间管理授课课件
- 高三班级成绩质量分析
- 初中历史学科试卷质量分析
- 爱护环境读书课件
- 二零二五版汽车抵押贷款合同借款人信用记录查询与维护合同
- 二零二五年度个人应急借款合同担保公证及援助方案
- 2025版彩瓦租赁与销售结合服务合同
- 二零二五年度彩钢房租赁与临时办公解决方案协议
- 二零二五年度生态修复工程承包垫资协议
- 爬架安全考试题及答案
- 2025年小学音乐教师资格考试试题及答案
- 我院科室护理病人隐私保护与信息安全
- 2025汽车销售合同标准经销商范本
- 暖通运维面试题库及答案
- 路面注浆打孔合同范本
- 新疆维吾尔自治区巴音郭楞蒙古自治州2024-2025学年八年级下学期期末模拟数学试题(无答案)
- DB32/T+5124.6-2025+临床护理技术规范+第6部分:成人危重症患者身体约束
- 资产收购方案(3篇)
- 混凝土立方体抗压强度试验工程材料试验与检测63课件
- 宠物合同购买协议书
评论
0/150
提交评论