




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷井研县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 下列函数在(0,+)上是增函数的是( )ABy=2x+5Cy=lnxDy=2 下面各组函数中为相同函数的是( )Af(x)=,g(x)=x1Bf(x)=,g(x)=Cf(x)=ln ex与g(x)=elnxDf(x)=(x1)0与g(x)=3 设f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f(x)的图象可能是( )ABCD4 若双曲线C:x2=1(b0)的顶点到渐近线的距离为,则双曲线的离心率e=( )A2BC3D5 函数f(x)=ax2+bx与f(x)=logx(ab0,|a|b|)在同一直角坐标系中的图象可能是( )ABCD6 设函数f(x)=,则f(1)=( )A0B1C2D37 执行如图所以的程序框图,如果输入a=5,那么输出n=( )A2B3C4D58 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )AB18CD9 若抛物线y2=2px的焦点与双曲线=1的右焦点重合,则p的值为( )A2B2C4D410某几何体的三视图如图所示,则它的表面积为( )ABCD11已知等差数列an的前n项和为Sn,若m1,且am1+am+1am2=0,S2m1=38,则m等于( )A38B20C10D912在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点若a为无理数,则在过点P(a,)的所有直线中( )A有无穷多条直线,每条直线上至少存在两个有理点B恰有n(n2)条直线,每条直线上至少存在两个有理点C有且仅有一条直线至少过两个有理点D每条直线至多过一个有理点二、填空题13i是虚数单位,若复数(12i)(a+i)是纯虚数,则实数a的值为14已知平面向量,的夹角为,向量,的夹角为,则与的夹角为_,的最大值为 【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.15函数的定义域是,则函数的定义域是_.11116已知直线l的参数方程是(t为参数),曲线C的极坐标方程是=8cos+6sin,则曲线C上到直线l的距离为4的点个数有个17已知,是空间二向量,若=3,|=2,|=,则与的夹角为18函数f(x)=log(x22x3)的单调递增区间为三、解答题19某电脑公司有6名产品推销员,其工作年限与年推销金额的数据如表:推销员编号12345工作年限x/年35679推销金额y/万元23345(1)以工作年限为自变量x,推销金额为因变量y,作出散点图;(2)求年推销金额y关于工作年限x的线性回归方程;(3)若第6名推销员的工作年限为11年,试估计他的年推销金额 20已知椭圆C的中心在坐标原点O,长轴在x轴上,离心率为,且椭圆C上一点到两个焦点的距离之和为4()椭圆C的标准方程()已知P、Q是椭圆C上的两点,若OPOQ,求证:为定值()当为()所求定值时,试探究OPOQ是否成立?并说明理由 21已知二次函数f(x)的图象过点(0,4),对任意x满足f(3x)=f(x),且有最小值是(1)求f(x)的解析式;(2)求函数h(x)=f(x)(2t3)x在区间0,1上的最小值,其中tR;(3)在区间1,3上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围22设函数f(x)=lg(axbx),且f(1)=lg2,f(2)=lg12(1)求a,b的值(2)当x1,2时,求f(x)的最大值(3)m为何值时,函数g(x)=ax的图象与h(x)=bxm的图象恒有两个交点 23已知函数(1)求f(x)的周期和及其图象的对称中心;(2)在ABC中,角A、B、C的对边分别是a、b、c,满足(2ac)cosB=bcosC,求函数f(A)的取值范围24已知椭圆的左、右焦点分别为F1(c,0),F2(c,0),P是椭圆C上任意一点,且椭圆的离心率为(1)求椭圆C的方程;(2)直线l1,l2是椭圆的任意两条切线,且l1l2,试探究在x轴上是否存在定点B,点B到l1,l2的距离之积恒为1?若存在,求出点B的坐标;若不存在,请说明理由 井研县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:对于A,函数y=在(,+)上是减函数,不满足题意;对于B,函数y=2x+5在(,+)上是减函数,不满足题意;对于C,函数y=lnx在(0,+)上是增函数,满足题意;对于D,函数y=在(0,+)上是减函数,不满足题意故选:C【点评】本题考查了基本初等函数的单调性的判断问题,是基础题目2 【答案】D【解析】解:对于A:f(x)=|x1|,g(x)=x1,表达式不同,不是相同函数;对于B:f(x)的定义域是:x|x1或x1,g(x)的定义域是xx1,定义域不同,不是相同函数;对于C:f(x)的定义域是R,g(x)的定义域是x|x0,定义域不同,不是相同函数;对于D:f(x)=1,g(x)=1,定义域都是x|x1,是相同函数;故选:D【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题3 【答案】D【解析】解:根据函数与导数的关系:可知,当f(x)0时,函数f(x)单调递增;当f(x)0时,函数f(x)单调递减结合函数y=f(x)的图象可知,当x0时,函数f(x)单调递减,则f(x)0,排除选项A,C当x0时,函数f(x)先单调递增,则f(x)0,排除选项B故选D【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题4 【答案】B【解析】解:双曲线C:x2=1(b0)的顶点为(1,0),渐近线方程为y=bx,由题意可得=,解得b=1,c=,即有离心率e=故选:B【点评】本题考查双曲线的离心率的求法,注意运用点到直线的距离公式,考查运算能力,属于基础题5 【答案】 D【解析】解:A、由图得f(x)=ax2+bx的对称轴x=0,则,不符合对数的底数范围,A不正确;B、由图得f(x)=ax2+bx的对称轴x=0,则,不符合对数的底数范围,B不正确;C、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=logx在定义域上是增函数,C不正确;D、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=logx在定义域上是减函数,D正确【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力6 【答案】D【解析】解:f(x)=,f(1)=ff(7)=f(5)=3故选:D7 【答案】B【解析】解:a=5,进入循环后各参数对应值变化如下表: p 15 20 结束q525n23结束运行的时候n=3故选:B【点评】本题考查了程序框图的应用,考查了条件结构和循环结构的知识点解题的关键是理解题设中语句的意义,从中得出算法,由算法求出输出的结果属于基础题8 【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:322+3()+=,故选:D9 【答案】D【解析】解:双曲线=1的右焦点为(2,0),即抛物线y2=2px的焦点为(2,0),=2,p=4故选D【点评】本题考查双曲线、抛物线的性质,考查学生的计算能力,属于基础题10【答案】 A【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,母线长为,圆锥的表面积S=S底面+S侧面=12+22+=2+故选A【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量11【答案】C【解析】解:根据等差数列的性质可得:am1+am+1=2am,则am1+am+1am2=am(2am)=0,解得:am=0或am=2,若am等于0,显然S2m1=(2m1)am=38不成立,故有am=2,S2m1=(2m1)am=4m2=38,解得m=10故选C12【答案】C【解析】解:设一条直线上存在两个有理点A(x1,y1),B(x2,y2),由于也在此直线上,所以,当x1=x2时,有x1=x2=a为无理数,与假设矛盾,此时该直线不存在有理点;当x1x2时,直线的斜率存在,且有,又x2a为无理数,而为有理数,所以只能是,且y2y1=0,即;所以满足条件的直线只有一条,且直线方程是;所以,正确的选项为C故选:C【点评】本题考查了新定义的关于直线方程与直线斜率的应用问题,解题的关键是理解新定义的内容,寻找解题的途径,是难理解的题目二、填空题13【答案】2 【解析】解:由(12i)(a+i)=(a+2)+(12a)i为纯虚数,得,解得:a=2故答案为:214【答案】,. 【解析】15【答案】【解析】考点:函数的定义域.16【答案】2 【解析】解:由,消去t得:2xy+5=0,由=8cos+6sin,得2=8cos+6sin,即x2+y2=8x+6y,化为标准式得(x4)2+(y3)2=25,即C是以(4,3)为圆心,5为半径的圆又圆心到直线l的距离是,故曲线C上到直线l的距离为4的点有2个,故答案为:2【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题17【答案】60 【解析】解:|=,=3,cos=与的夹角为60故答案为:60【点评】本题考查平面向量数量积表示夹角和模长,本题解题的关键是整理出两个向量的数量积,再用夹角的表示式18【答案】(,1) 【解析】解:函数的定义域为x|x3或x1令t=x22x3,则y=因为y=在(0,+)单调递减t=x22x3在(,1)单调递减,在(3,+)单调递增由复合函数的单调性可知函数的单调增区间为(,1)故答案为:(,1)三、解答题19【答案】 【解析】解:(1)依题意,画出散点图如图所示,(2)从散点图可以看出,这些点大致在一条直线附近,设所求的线性回归方程为则,年推销金额y关于工作年限x的线性回归方程为=0.5x+0.4(3)由(2)可知,当x=11时, =0.5x+0.4=0.511+0.4=5.9(万元)可以估计第6名推销员的年推销金额为5.9万元 20【答案】 【解析】(I)解:由题意可设椭圆的坐标方程为(ab0)离心率为,且椭圆C上一点到两个焦点的距离之和为4,2a=4,解得a=2,c=1b2=a2c2=3椭圆C的标准方程为(II)证明:当OP与OQ的斜率都存在时,设直线OP的方程为y=kx(k0),则直线OQ的方程为y=x(k0),P(x,y)联立,化为,|OP|2=x2+y2=,同理可得|OQ|2=,=+=为定值当直线OP或OQ的斜率一个为0而另一个不存在时,上式也成立因此=为定值(III)当=定值时,试探究OPOQ是否成立?并说明理由OPOQ不一定成立下面给出证明证明:当直线OP或OQ的斜率一个为0而另一个不存在时,则=,满足条件当直线OP或OQ的斜率都存在时,设直线OP的方程为y=kx(k0),则直线OQ的方程为y=kx(kk,k0),P(x,y)联立,化为,|OP|2=x2+y2=,同理可得|OQ|2=,=+=化为(kk)2=1,kk=1OPOQ或kk=1因此OPOQ不一定成立【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得交点坐标、相互垂直的直线斜率之间的关系,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于难题21【答案】 【解析】解:(1)二次函数f(x)图象经过点(0,4),任意x满足f(3x)=f(x)则对称轴x=,f(x)存在最小值,则二次项系数a0设f(x)=a(x)2+将点(0,4)代入得:f(0)=,解得:a=1f(x)=(x)2+=x23x+4(2)h(x)=f(x)(2t3)x=x22tx+4=(xt)2+4t2,x0,1当对称轴x=t0时,h(x)在x=0处取得最小值h(0)=4; 当对称轴0x=t1时,h(x)在x=t处取得最小值h(t)=4t2; 当对称轴x=t1时,h(x)在x=1处取得最小值h(1)=12t+4=2t+5综上所述:当t0时,最小值4;当0t1时,最小值4t2;当t1时,最小值2t+5(3)由已知:f(x)2x+m对于x1,3恒成立,mx25x+4对x1,3恒成立,g(x)=x25x+4在x1,3上的最小值为,m22【答案】 【解析】解:(1)f(x)=lg(axbx),且f(1)=lg2,f(2)=lg12,ab=2,a2b2=12,解得:a=4,b=2;(2)由(1)得:函数f(x)=lg(4x2x),当x1,2时,4x2x2,12,故当x=2时,函数f(x)取最大值lg12,(3)若函数g(x)=ax的图象与h(x)=bxm的图象恒有两个交点则4x2x=m有两个解,令t=2x,则t0,则t2t=m有两个正解;则,解得:m(,0)【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键23【答案】 【解析】解:(1)由,f(x)的周期为4由,故f(x)图象的对称中心为(2)由(2ac)cosB=bcosC,得(2sinAsinC)cosB=sinBcosC,2sinAcosBcosBsinC=sinBcosC,2sinAcosB=sin(B+C),A+B+C=,sin(B+C)=sinA,且sinA0,故函数f(A)的取值范围
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新材料行业当前发展现状及增长策略研究报告
- 2025年防护眼镜行业当前发展趋势与投资机遇洞察报告
- 收纳行业知识培训内容课件
- 2025年职业技能(工业废水处理工)专业技术及理论知识考试题库与答案
- 2025年版《手术室护理实践指南》练习题(及答案)
- 2025保密宣传教育月有奖答题试题及答案
- 2025员工三级安全教育考试试题含答案
- 2025年高级美容师理论知识资格考试模拟试题库及答案
- 2025年社会工作者之中级社会综合能力通关考试题库带答案解析
- 2024年服装设计师、制作工专业技能理论知识考试题库(含答案)
- 2025年福建新华发行(集团)有限责任公司南平地区招聘笔试参考题库含答案解析
- DZ/T 0054-2014定向钻探技术规程
- CJ/T 43-2005水处理用滤料
- 护理十八项核心制度考试题与答案
- 煤矿劳动定额试题及答案
- 物业管理实务知识2025年考试试题及答案
- 2025安徽农业大学辅导员考试试题及答案
- 签订主仆协议书
- 2025年道路交通工程与安全管理考试试题及答案
- 入股买船合同协议书
- 2025-2030摩托车保险行业市场运行态势分析及前景趋势与投资研究报告
评论
0/150
提交评论