




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷集美区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 若偶函数f(x)在(,0)内单调递减,则不等式f(1)f(lg x)的解集是( )A(0,10)B(,10)C(,+)D(0,)(10,+)2 如图,已知双曲线=1(a0,b0)的左右焦点分别为F1,F2,|F1F2|=4,P是双曲线右支上一点,直线PF2交y轴于点A,AF1P的内切圆切边PF1于点Q,若|PQ|=1,则双曲线的渐近线方程为( )Ay=xBy=3xCy=xDy=x3 若偶函数y=f(x),xR,满足f(x+2)=f(x),且x0,2时,f(x)=1x,则方程f(x)=log8|x|在10,10内的根的个数为( )A12B10C9D84 复数z=(mR,i为虚数单位)在复平面上对应的点不可能位于( )A第一象限B第二象限C第三象限D第四象限5 设集合A=x|2x4,B=2,1,2,4,则AB=( )A1,2B1,4C1,2D2,46 用一平面去截球所得截面的面积为2,已知球心到该截面的距离为1,则该球的体积是( )AB2C4D 7 如果命题pq是真命题,命题p是假命题,那么( )A命题p一定是假命题B命题q一定是假命题C命题q一定是真命题D命题q是真命题或假命题8 过点,的直线的斜率为,则( )A B C D9 正方体的内切球与外接球的半径之比为( )ABCD10复数Z=(i为虚数单位)在复平面内对应点的坐标是( )A(1,3)B(1,3)C(3,1)D(2,4) 11棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )AB18CD12如图,三行三列的方阵中有9个数aij(i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )ABCD二、填空题13若命题“xR,x22x+m0”是假命题,则m的取值范围是14一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是15如图,在三棱锥中,为等边三角形,则与平面所成角的正弦值为_.【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力16下列四个命题申是真命题的是(填所有真命题的序号)“pq为真”是“pq为真”的充分不必要条件;空间中一个角的两边和另一个角的两边分别平行,则这两个角相等;在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30的角;动圆P过定点A(2,0),且在定圆B:(x2)2+y2=36的内部与其相内切,则动圆圆心P的轨迹为一个椭圆17已知为常数,若,则_.18用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是 .(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.三、解答题19等差数列an 中,a1=1,前n项和Sn满足条件,()求数列an 的通项公式和Sn;()记bn=an2n1,求数列bn的前n项和Tn20如图所示,在边长为的正方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个圆,M,N,K为切点,以扇形为圆锥的侧面,以圆O为圆锥底面,围成一个圆锥,求圆锥的全面积与体积21(本题满分12分)已知数列的前项和为,且,().(1)求数列的通项公式;(2)记,是数列的前项和,求.【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前项和.重点突出对运算及化归能力的考查,属于中档难度.22已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为,在其上有一动点A,A到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示()求椭圆E的方程;()判断ABCD能否为菱形,并说明理由()当ABCD的面积取到最大值时,判断ABCD的形状,并求出其最大值23已知曲线C的参数方程为(y为参数),过点A(2,1)作平行于=的直线l 与曲线C分别交于B,C两点(极坐标系的极点、极轴分别与直角坐标系的原点、x轴的正半轴重合)()写出曲线C的普通方程;()求B、C两点间的距离24某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:x24568y3040605070(1)画出散点图;(2)求线性回归方程;(3)预测当广告费支出7(百万元)时的销售额集美区第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:因为f(x)为偶函数,所以f(x)=f(|x|),因为f(x)在(,0)内单调递减,所以f(x)在(0,+)内单调递增,由f(1)f(lg x),得|lg x|1,即lg x1或lg x1,解得x10或0x故选:D【点评】本题考查了函数的单调性与奇偶性的综合应用,在解对数不等式时注意对数的真数大于0,是个基础题2 【答案】D【解析】解:设内切圆与AP切于点M,与AF1切于点N,|PF1|=m,|QF1|=n,由双曲线的定义可得|PF1|PF2|=2a,即有m(n1)=2a,由切线的性质可得|AM|=|AN|,|NF1|=|QF1|=n,|MP|=|PQ|=1,|MF2|=|NF1|=n,即有m1=n,由解得a=1,由|F1F2|=4,则c=2,b=,由双曲线=1的渐近线方程为y=x,即有渐近线方程为y=x故选D【点评】本题考查双曲线的方程和性质,考查切线的性质,运用对称性和双曲线的定义是解题的关键3 【答案】D【解析】解:函数y=f(x)为偶函数,且满足f(x+2)=f(x),f(x+4)=f(x+2+2)=f(x+2)=f(x),偶函数y=f(x)为周期为4的函数,由x0,2时,f(x)=1x,可作出函数f(x)在10,10的图象,同时作出函数f(x)=log8|x|在10,10的图象,交点个数即为所求数形结合可得交点个为8,故选:D4 【答案】C【解析】解:z=+i,当1+m0且1m0时,有解:1m1;当1+m0且1m0时,有解:m1;当1+m0且1m0时,有解:m1;当1+m0且1m0时,无解;故选:C【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题5 【答案】A【解析】解:集合A=x|2x4,B=2,1,2,4,则AB=1,2故选:A【点评】本题考查交集的运算法则的应用,是基础题6 【答案】C【解析】解:用一平面去截球所得截面的面积为2,所以小圆的半径为: cm;已知球心到该截面的距离为1,所以球的半径为:,所以球的体积为: =4故选:C7 【答案】D【解析】解:命题“p或q”真命题,则命题p与命题q中至少有一个命题为真命题,又命题“非p”也是假命题,命题p为真命题故命题q为可真可假故选D【点评】本题考查的知识点是命题的真假判断与应用,其中熟练掌握复合命题真值表是解答本题的关键8 【答案】【解析】考点:1.斜率;2.两点间距离.9 【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,设正方体的棱长为:2a,所以内切球的半径为:a;外接球的直径为2a,半径为: a,所以,正方体的内切球与外接球的半径之比为:故选C10【答案】A【解析】解:复数Z=(1+2i)(1i)=3+i在复平面内对应点的坐标是(3,1)故选:A【点评】本题考查了复数的运算法则、几何意义,属于基础题11【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:322+3()+=,故选:D12【答案】 D【解析】古典概型及其概率计算公式【专题】计算题;概率与统计【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论【解答】解:从9个数中任取3个数共有C93=84种取法,三个数分别位于三行或三列的情况有6种;所求的概率为=故选D【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单二、填空题13【答案】m1 【解析】解:若命题“xR,x22x+m0”是假命题,则命题“xR,x22x+m0”是真命题,即判别式=44m0,解得m1,故答案为:m114【答案】 【解析】解:由题意可得,2a,2b,2c成等差数列2b=a+c4b2=a2+2ac+c2b2=a2c2联立可得,5c2+2ac3a2=05e2+2e3=00e1故答案为:【点评】本题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题15【答案】 【解析】16【答案】 【解析】解:“pq为真”,则p,q同时为真命题,则“pq为真”,当p真q假时,满足pq为真,但pq为假,则“pq为真”是“pq为真”的充分不必要条件正确,故正确;空间中一个角的两边和另一个角的两边分别平行,则这两个角相等或互补;故错误,设正三棱锥为PABC,顶点P在底面的射影为O,则O为ABC的中心,PCO为侧棱与底面所成角正三棱锥的底面边长为3,CO=侧棱长为2,在直角POC中,tanPCO=侧棱与底面所成角的正切值为,即侧棱与底面所成角为30,故正确,如图,设动圆P和定圆B内切于M,则动圆的圆心P到两点,即定点A(2,0)和定圆的圆心B(2,0)的距离之和恰好等于定圆半径,即|PA|+|PB|=|PM|+|PB|=|BM|=64=|AB|点P的轨迹是以A、B为焦点的椭圆,故动圆圆心P的轨迹为一个椭圆,故正确,故答案为:17【答案】【解析】试题分析:由,得,即,比较系数得,解得或,则.考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简的解析式是解答的关键.18【答案】48【解析】三、解答题19【答案】 【解析】解:()设等差数列的公差为d,由=4得=4,所以a2=3a1=3且d=a2a1=2,所以an=a1+(n1)d=2n1,=()由bn=an2n1,得bn=(2n1)2n1所以Tn=1+321+522+(2n1)2n1 2Tn=2+322+523+(2n3)2n1+(2n1)2n 得:Tn=1+22+222+22n1(2n1)2n=2(1+2+22+2n1)(2n1)2n1=2(2n1)2n1=2n(32n)3Tn=(2n3)2n+3【点评】本题主要考查数列求和的错位相减,错位相减法适用于通项为一等差数列乘一等比数列组成的新数列此方法是数列求和部分高考考查的重点及热点20【答案】 【解析】解:设圆锥的母线长为l,底面半径为r,高为h,由已知条件,解得,S=rl+r2=10,21【答案】【解析】(1)当时,;1分当时,当时,整理得.3分数列是以3为首项,公比为3的等比数列.数列的通项公式为.5分22【答案】 【解析】解:(I)由题意可得:,解得c=1,a=2,b2=3椭圆E的方程为=1(II)假设ABCD能为菱形,则OAOB,kOAkOB=1当ABx轴时,把x=1代入椭圆方程可得: =1,解得y=,取A,则|AD|=2,|AB|=3,此时ABCD不能为菱形当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2)联立,化为:(3+4k2)x2+8k2x+4k212=0,x1+x2=,x1x2=kOAkOB=,假设=1,化为k2=,因此平行四边形ABCD不可能是菱形综上可得:平行四边形ABCD不可能是菱形(III)当ABx轴时,由(II)可得:|AD|=2,|AB|=3,此时ABCD为矩形,S矩形ABCD=6当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2)联立,化为:(3+4k2)x2+8k2x+4k212=0,x1+x2=,x1x2=|AB|=点O到直线AB的距离d=S平行四边形ABCD=4SOAB=2=则S2=36,S6因此当平行四边形ABCD为矩形面积取得最大值623【答案】 【解析】解:()由曲线C的参数方程为(y为参数),消去参数t得,y2=4x()依题意,直线l的参数方程为(t为参数),代
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 投标签到登记表
- DBJ04-T496-2025 《工程造价咨询档案管理标准》
- 人教版(2019)必修 第一册 Travelling around Reading and thinking课件(内嵌视频)
- 云南省玉溪市2022-2023学年高二下学期化学期末考试试题(含答案)
- 汽车传感器与检测技术课件:ABS灯亮-轮速传感器故障
- 园林公司项目管理制度
- 海南“滨海贵族温泉花园”项目可行性研究报告119p
- 介绍庙会民俗活动方案
- 物理中考一轮复习教案 第二十三讲 动能势能机械能、内能热传递
- 介绍马戏活动方案
- 节气科学知识
- 光伏工商业培训课件
- 2024年湖北新华书店有限公司招聘笔试参考题库含答案解析
- 宫颈炎护理查房
- 发展汉语初级读写第一课知识介绍
- 基于大数据的驾驶员安全驾驶行为分析与应用
- 基于System-View的巴克码识别器的课程设计报告
- 退伍军人登记表
- 广东检测鉴定协会非金属考试试题
- 马克思主义基本原理智慧树知到课后章节答案2023年下湖南大学
- 中学信息考试突发事件应急处置预案
评论
0/150
提交评论