方正县第三中学校2018-2019学年上学期高二数学12月月考试题含解析_第1页
方正县第三中学校2018-2019学年上学期高二数学12月月考试题含解析_第2页
方正县第三中学校2018-2019学年上学期高二数学12月月考试题含解析_第3页
方正县第三中学校2018-2019学年上学期高二数学12月月考试题含解析_第4页
方正县第三中学校2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷方正县第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知正方体的不在同一表面的两个顶点A(1,2,1),B(3,2,3),则正方体的棱长等于( )A4B2CD22 已知复数z满足zi=2i,i为虚数单位,则z=( )A12iB1+2iC12iD1+2i3 抛物线y=x2上的点到直线4x+3y8=0距离的最小值是( )ABCD34 已知一个算法的程序框图如图所示,当输出的结果为时,则输入的值为( )A B C或 D或5 若实数x,y满足不等式组则2x+4y的最小值是( )A6B6C4D26 若函数f(x)的定义域为R,则“函数f(x)是奇函数”是“f(0)=0”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件7 若函数f(x)=a(xx3)的递减区间为(,),则a的取值范围是( )Aa0B1a0Ca1D0a18 在ABC中,若2cosCsinA=sinB,则ABC的形状是( )A直角三角形B等边三角形C等腰直角三角形D等腰三角形9 若点O和点F(2,0)分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为( )ABCD10已知函数f(x)=x3+(1b)x2a(b3)x+b2的图象过原点,且在原点处的切线斜率是3,则不等式组所确定的平面区域在x2+y2=4内的面积为( )ABCD211棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )AB18CD12某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是( )ABC1D二、填空题13用“”或“”号填空:30.830.714函数图象上不同两点处的切线的斜率分别是,规定(为线段AB的长度)叫做曲线在点A与点B之间的“弯曲度”,给出以下命题:函数图象上两点A与B的横坐标分别为1和2,则;存在这样的函数,图象上任意两点之间的“弯曲度”为常数;设点A,B是抛物线上不同的两点,则;设曲线(e是自然对数的底数)上不同两点,若恒成立,则实数t的取值范围是.其中真命题的序号为_.(将所有真命题的序号都填上)15抛物线y2=8x上到焦点距离等于6的点的坐标是16计算:51=17已知函数f(x)=,点O为坐标原点,点An(n,f(n)(nN+),向量=(0,1),n是向量与i的夹角,则+=18已知过双曲线的右焦点的直线交双曲线于两点,连结,若,且,则双曲线的离心率为( )A B C D【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想三、解答题19设函数f()=,其中,角的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0()若点P的坐标为,求f()的值;()若点P(x,y)为平面区域:上的一个动点,试确定角的取值范围,并求函数f()的最小值和最大值20如图,平面ABB1A1为圆柱OO1的轴截面,点C为底面圆周上异于A,B的任意一点()求证:BC平面A1AC;()若D为AC的中点,求证:A1D平面O1BC21(本题满分14分)在中,角,所对的边分别为,已知(1)求角的大小; (2)若,求的取值范围【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力22已知在ABC中,A(2,4),B(1,2),C(4,3),BC边上的高为AD(1)求证:ABAC; (2)求向量23(本小题满分12分)设,满足(1)求的值;(2)求的值24已知集合A=x|x1,或x2,B=x|2p1xp+3(1)若p=,求AB;(2)若AB=B,求实数p的取值范围方正县第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:正方体中不在同一表面上两顶点A(1,2,1),B(3,2,3),AB是正方体的体对角线,AB=,设正方体的棱长为x,则,解得x=4正方体的棱长为4,故选:A【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题2 【答案】A【解析】解:由zi=2i得,故选A3 【答案】A【解析】解:由,得3x24x+8=0=(4)2438=800所以直线4x+3y8=0与抛物线y=x2无交点设与直线4x+3y8=0平行的直线为4x+3y+m=0联立,得3x24xm=0由=(4)243(m)=16+12m=0,得m=所以与直线4x+3y8=0平行且与抛物线y=x2相切的直线方程为4x+3y=0所以抛物线y=x2上的一点到直线4x+3y8=0的距离的最小值是=故选:A【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题4 【答案】【解析】试题分析:程序是分段函数 ,当时,解得,当时,解得,所以输入的是或,故选D.考点:1.分段函数;2.程序框图.111115 【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=x+,平移直线y=x+,由图象可知当直线y=x+经过点C时,直线y=x+的截距最小,此时z最小,由,解得,即C(3,3),此时z=2x+4y=23+4(3)=612=6故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键6 【答案】A【解析】解:由奇函数的定义可知:若f(x)为奇函数,则任意x都有f(x)=f(x),取x=0,可得f(0)=0;而仅由f(0)=0不能推得f(x)为奇函数,比如f(x)=x2,显然满足f(0)=0,但f(x)为偶函数由充要条件的定义可得:“函数f(x)是奇函数”是“f(0)=0”的充分不必要条件故选:A7 【答案】A【解析】解:函数f(x)=a(xx3)的递减区间为(,)f(x)0,x(,)恒成立即:a(13x2)0,x(,)恒成立13x20成立a0故选A【点评】本题主要考查函数单调性的应用,一般来讲已知单调性,则往往转化为恒成立问题去解决8 【答案】D【解析】解:A+B+C=180,sinB=sin(A+C)=sinAcosC+sinCcosA=2cosCsinA,sinCcosAsinAcosC=0,即sin(CA)=0,A=C 即为等腰三角形故选:D【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础9 【答案】B【解析】解:因为F(2,0)是已知双曲线的左焦点,所以a2+1=4,即a2=3,所以双曲线方程为,设点P(x0,y0),则有,解得,因为,所以=x0(x0+2)+=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最小值=,故的取值范围是,故选B【点评】本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程度以及知识的综合应用能力、运算能力10【答案】 B【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2则f(x)=x3x2+ax,函数的导数f(x)=x22x+a,因为原点处的切线斜率是3,即f(0)=3,所以f(0)=a=3,故a=3,b=2,所以不等式组为则不等式组确定的平面区域在圆x2+y2=4内的面积,如图阴影部分表示,所以圆内的阴影部分扇形即为所求kOB=,kOA=,tanBOA=1,BOA=,扇形的圆心角为,扇形的面积是圆的面积的八分之一,圆x2+y2=4在区域D内的面积为4=,故选:B【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a,b的是值,然后借助不等式区域求解面积是解决本题的关键11【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:322+3()+=,故选:D12【答案】B【解析】解:由三视图知几何体的直观图是半个圆锥,又正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,半圆锥的底面半径为1,高为,即半圆锥的侧视图是一个两直角边长分别为1和的直角三角形,故侧视图的面积是,故选:B【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状二、填空题13【答案】 【解析】解:y=3x是增函数,又0.80.7,30.830.7故答案为:【点评】本题考查对数函数、指数函数的性质和应用,是基础题14【答案】【解析】试题分析:错:对:如;对;错;,因为恒成立,故.故答案为.111考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题.15【答案】(4,) 【解析】解:抛物线方程为y2=8x,可得2p=8, =2抛物线的焦点为F(2,0),准线为x=2设抛物线上点P(m,n)到焦点F的距离等于6,根据抛物线的定义,得点P到F的距离等于P到准线的距离,即|PF|=m+2=6,解得m=4,n2=8m=32,可得n=4,因此,点P的坐标为(4,)故答案为:(4,)【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标着重考查了抛物线的定义与标准方程等知识,属于基础题16【答案】9 【解析】解:51=(5)(9)=9,51=9,故答案为:917【答案】 【解析】解:点An(n,)(nN+),向量=(0,1),n是向量与i的夹角,=, =, =,+=+=1=,故答案为:【点评】本题考查了向量的夹角、数列“裂项求和”方法,考查了推理能力与计算能力,属于中档题18【答案】B【解析】三、解答题19【答案】 【解析】解()由点P的坐标和三角函数的定义可得:于是f()=2()作出平面区域(即ABC)如图所示,其中A(1,0),B(1,1),C(0,1)因为P,所以0,f()=,且,故当,即时,f()取得最大值2;当,即=0时,f()取得最小值1【点评】本题主要考查三角函数、不等式等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想20【答案】 【解析】证明:()因为AB为圆O的直径,点C为圆O上的任意一点BCAC 又圆柱OO1中,AA1底面圆O,AA1BC,即BCAA1 而AA1AC=ABC平面A1AC ()取BC中点E,连结DE、O1E,D为AC的中点ABC中,DEAB,且DE=AB 又圆柱OO1中,A1O1AB,且DEA1O1,DE=A1O1A1DEO1为平行四边形 A1DEO1 而A1D平面O1BC,EO1平面O1BCA1D平面O1BC 【点评】本题主要考查直线与直线、直线与平面、平面与平面的位置关系;考查学生的空间想象能力及推理论证能力21【答案】(1);(2).【解析】22【答案】 【解析】解(1)=(1,2)(2,4)=(3,6),=(4,3)(2,4)=(2,1),=32+(6)(1)=0,ABAC(2)=(4,3)(1,2)=(5,5)设=(5,5)则=+=(3,6)+(5,5)=(53,56),由ADBC得5(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论