




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
龙州县一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 在等差数列an中,a1+a2+a3=24,a10+a11+a12=78,则此数列前12项和等于( )A96B108C204D2162 将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( )A1372B2024C3136D44953 己知y=f(x)是定义在R上的奇函数,当x0时,f(x)=x+2,那么不等式2f(x)10的解集是( )AB或CD或4 在复平面内,复数(4+5i)i(i为虚数单位)的共轭复数对应的点位于( )A第一象限B第二象限C第三象限D第四象限5 已知两条直线ax+y2=0和3x+(a+2)y+1=0互相平行,则实数a等于( )A1或3B1或3C1或3D1或36 已知函数f(x)是(,0)(0,+)上的奇函数,且当x0时,函数的部分图象如图所示,则不等式xf(x)0的解集是( )A(2,1)(1,2)B(2,1)(0,1)(2,+)C(,2)(1,0)(1,2)D(,2)(1,0)(0,1)(2,+)7 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A至少有一个白球;都是白球B至少有一个白球;至少有一个红球C恰有一个白球;一个白球一个黑球D至少有一个白球;红、黑球各一个8 如图RtOAB是一平面图形的直观图,斜边OB=2,则这个平面图形的面积是( )AB1CD9 已知集合M=1,4,7,MN=M,则集合N不可能是( )AB1,4CMD2,710已知函数,则要得到其导函数的图象,只需将函数的图象( )A向右平移个单位 B向左平移个单位C. 向右平移个单位 D左平移个单位11若函数f(x)=2x3+ax2+1存在唯一的零点,则实数a的取值范围为( )A0,+)B0,3C(3,0D(3,+)12如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )A30B50C75D150二、填空题13若函数在区间上单调递增,则实数的取值范围是_.141785与840的最大约数为15曲线y=x+ex在点A(0,1)处的切线方程是16函数f(x)=x2ex在区间(a,a+1)上存在极值点,则实数a的取值范围为17设变量x,y满足约束条件,则的最小值为18在ABC中,若a=9,b=10,c=12,则ABC的形状是 三、解答题19如图,在三棱柱ABCA1B1C1中,AA1C1C是边长为4的正方形平面ABC平面AA1C1C,AB=3,BC=5()求证:AA1平面ABC;()求证二面角A1BC1B1的余弦值;()证明:在线段BC1上存在点D,使得ADA1B,并求的值20如图,边长为2的正方形ABCD绕AB边所在直线旋转一定的角度(小于180)到ABEF的位置()求证:CE平面ADF;()若K为线段BE上异于B,E的点,CE=2设直线AK与平面BDF所成角为,当3045时,求BK的取值范围21已知向量=(,1),=(cos,),记f(x)=(1)求函数f(x)的最小正周期和单调递增区间;(2)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,讨论函数y=g(x)k在的零点个数22如图,在三棱柱ABCA1B1C1中,侧棱垂直于底面,ABBC,E,F分别是A1C1,AB的中点(I)求证:平面BCE平面A1ABB1;(II)求证:EF平面B1BCC1;(III)求四棱锥BA1ACC1的体积23双曲线C与椭圆+=1有相同的焦点,直线y=x为C的一条渐近线求双曲线C的方程24(本题满分14分)已知函数.(1)若在上是单调递减函数,求实数的取值范围;(2)记,并设是函数的两个极值点,若,求的最小值.龙州县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:在等差数列an中,a1+a2+a3=24,a10+a11+a12=78,3a2=24,3a11=78,解得a2=8,a11=26,此数列前12项和=618=108,故选B【点评】本题考查了等差数列的前n项和公式,以及等差数列的性质,属于基础题2 【答案】 C【解析】【专题】排列组合【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法这类三角形共有473=1372个另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点这类三角形共有42121=1764个综上可知,可得不同三角形的个数为1372+1764=3136故选:C【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题3 【答案】B【解析】解:因为y=f(x)为奇函数,所以当x0时,x0,根据题意得:f(x)=f(x)=x+2,即f(x)=x2,当x0时,f(x)=x+2,代入所求不等式得:2(x+2)10,即2x3,解得x,则原不等式的解集为x;当x0时,f(x)=x2,代入所求的不等式得:2(x2)10,即2x5,解得x,则原不等式的解集为0x,综上,所求不等式的解集为x|x或0x故选B4 【答案】B【解析】解:(4+5i)i=54i,复数(4+5i)i的共轭复数为:5+4i,在复平面内,复数(4+5i)i的共轭复数对应的点的坐标为:(5,4),位于第二象限故选:B5 【答案】A【解析】解:两条直线ax+y2=0和3x+(a+2)y+1=0互相平行,所以=,解得 a=3,或a=1故选:A6 【答案】D【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图 则不等式xf(x)0的解为:或解得:x(,2)(1,0)(0,1)(2,+)故选:D7 【答案】D【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况,所以至少有一个白球,至多有一个白球不互斥;至少有一个白球,至少有一个红球不互斥;至少有一个白球,没有白球互斥且对立;至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,故选:D【点评】本题考查了互斥事件和对立事件,是基础的概念题8 【答案】D【解析】解:RtOAB是一平面图形的直观图,斜边OB=2,直角三角形的直角边长是,直角三角形的面积是,原平面图形的面积是12=2故选D9 【答案】D【解析】解:MN=M,NM,集合N不可能是2,7,故选:D【点评】本题主要考查集合的关系的判断,比较基础10【答案】B 【解析】试题分析:函数,所以函数,所以将函数函数的图象上所有的点向左平移个单位长度得到,故选B. 考点:函数的图象变换.11【答案】 D【解析】解:令f(x)=2x3+ax2+1=0,易知当x=0时上式不成立;故a=2x,令g(x)=2x,则g(x)=2+=2,故g(x)在(,1)上是增函数,在(1,0)上是减函数,在(0,+)上是增函数;故作g(x)=2x的图象如下,g(1)=21=3,故结合图象可知,a3时,方程a=2x有且只有一个解,即函数f(x)=2x3+ax2+1存在唯一的零点,故选:D12【答案】B【解析】解:该几何体是四棱锥,其底面面积S=56=30,高h=5,则其体积V=Sh=305=50故选B二、填空题13【答案】【解析】试题分析:因为在区间上单调递增,所以时,恒成立,即恒成立,可得,故答案为.1考点:1、利用导数研究函数的单调性;2、不等式恒成立问题.14【答案】105 【解析】解:1785=8402+105,840=1058+0840与1785的最大公约数是105故答案为10515【答案】2xy+1=0 【解析】解:由题意得,y=(x+ex)=1+ex,点A(0,1)处的切线斜率k=1+e0=2,则点A(0,1)处的切线方程是y1=2x,即2xy+1=0,故答案为:2xy+1=0【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题16【答案】(3,2)(1,0) 【解析】解:函数f(x)=x2ex的导数为y=2xex+x2ex =xex (x+2),令y=0,则x=0或2,2x0上单调递减,(,2),(0,+)上单调递增,0或2是函数的极值点,函数f(x)=x2ex在区间(a,a+1)上存在极值点,a2a+1或a0a+1,3a2或1a0故答案为:(3,2)(1,0)17【答案】4 【解析】解:作出不等式组对应的平面区域,则的几何意义为区域内的点到原点的斜率,由图象可知,OC的斜率最小,由,解得,即C(4,1),此时=4,故的最小值为4,故答案为:4【点评】本题主要考查线性规划的应用,利用直线斜率的定义以及数形结合是解决本题的关键18【答案】锐角三角形【解析】解:c=12是最大边,角C是最大角根据余弦定理,得cosC=0C(0,),角C是锐角,由此可得A、B也是锐角,所以ABC是锐角三角形故答案为:锐角三角形【点评】本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题三、解答题19【答案】 【解析】(I)证明:AA1C1C是正方形,AA1AC又平面ABC平面AA1C1C,平面ABC平面AA1C1C=AC,AA1平面ABC(II)解:由AC=4,BC=5,AB=3AC2+AB2=BC2,ABAC建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2)则,令y1=4,解得x1=0,z1=3,令x2=3,解得y2=4,z2=0,=二面角A1BC1B1的余弦值为(III)设点D的竖坐标为t,(0t4),在平面BCC1B1中作DEBC于E,可得D,=, =(0,3,4),解得t=【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力20【答案】 【解析】解:()证明:正方形ABCD中,CDBA,正方形ABEF中,EFBAEFCD,四边形EFDC为平行四边形,CEDF又DF平面ADF,CE平面ADF,CE平面ADF ()解:BE=BC=2,CE=,CE2=BC2+BE2BCE为直角三角形,BEBC,又BEBA,BCBA=B,BC、BA平面ABCD,BE平面ABCD 以B为原点,、的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系,则B(0,0,0),F(0,2,2),A(0,2,0),=(2,2,0),=(0,2,2)设K(0,0,m),平面BDF的一个法向量为=(x,y,z)由,得可取=(1,1,1),又=(0,2,m),于是sin=,3045,即结合0m2,解得0,即BK的取值范围为(0,4【点评】本小题主要考查空间直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、抽象概括能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想21【答案】 【解析】解:(1)向量=(,1),=(cos,),记f(x)=f(x)=cos+=sin+cos+=sin(+)+,最小正周期T=4,2k+2k+,则4kx4k+,kZ故函数f(x)的单调递增区间是4k,4k+,kZ;(2)将函数y=f(x)=sin(+)+的图象向右平移个单位得到函数解析式为:y=g(x)=sin(x+)+ =sin()+,则y=g(x)k=sin(x)+k,x0,可得:x,sin(x)1,0sin(x)+,若函数y=g(x)k在0,上有零点,则函数y=g(x)的图象与直线y=k在0,上有交点,实数k的取值范围是0,当k0或k时,函数y=g(x)k在的零点个数是0;当0k1时,函数y=g(x)k在的零点个数是2;当k=0或k=时,函数y=g(x)k在的零点个数是1【点评】本题是中档题,考查向量的数量积的应用,三角函数的化简求值,函数的单调增区间的求法,函数零点的判断方法,考查计算能力22【答案】 【解析】(I)证明:在三棱柱ABCA1B1C1中,BB1底面ABC,所以,BB1BC又因为ABBC且ABBB1=B,所以,BC平面A1ABB1因为BC平面BCE,所以,平面BCE平面A1ABB1(II)证明:取BC的中点D,连接C1D,FD因为E,F分别是A1C1,AB的中点,所以,FDAC且因为ACA1C1且AC=A1C1,所以,FDEC1且 FD=EC1所以,四边形FDC1E是平行四边形所以,EFC1D又因为C1D平面B1BCC1,EF平面B1BCC1,所以,EF平面B1BCC1(III)解:因为,ABBC所以,过点B作BGAC于点G,则因为,在三棱柱ABCA1B1C1中,AA1底面ABC,AA1平面A1ACC1所以,平面A1ACC1底面ABC所以,BG平面A1AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金融科技在消费领域资源配置中的角色
- 消费升级背景下的融资模式创新
- 文化体制改革中的地方政府角色探析
- 深化工业园区改革创新的面临的问题、机遇与挑战
- 2025年装配式建筑施工员职业技能认证模拟试卷(装配式建筑施工技术)-装配式建筑装配式构件质量与安全
- 抽水蓄能对电力安全保障的贡献分析
- 2025汽车销售合同范文
- 基于大数据的医学教育个性化发展
- 中秋节品牌营销策略
- 动物世界解析
- 2024年陕西省西安市中考地理试题卷(含答案逐题解析)
- 2024年汽车驾驶员(技师)证考试题库附答案
- 辛亥革命胜利的历史意义及其局限性
- 化学高考考前指导讲座
- 新疆维吾尔自治区2024年普通高考第三次适应性检测(三模)英语试卷(含答案详解)
- 2023-2024学年全国初中一年级下历史人教版期末试卷(含答案解析)
- 2024京东代运营服务合同范本
- 海上风电柔性直流输电系统先进控制技术分析报告
- 2024届四川省泸州市龙马潭区六年级语文小升初摸底考试含答案
- 三年级语文下册 期末综合模拟测试卷(人教浙江版)
- 尿培养的健康宣教
评论
0/150
提交评论