




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷双桥区第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 函数在定义域上的导函数是,若,且当时,设,则( )A B C D2 已知函数f(x)是定义在R上的奇函数,当x0时,.若,f(x-1)f(x),则实数a的取值范围为ABCD3 若,且,则与的值分别为( )AB5,2CD5,24 集合A=1,2,3,集合B=1,1,3,集合S=AB,则集合S的子集有( )A2个B3 个C4 个D8个5 抛物线E:y2=2px(p0)的焦点为F,点A(0,2),若线段AF的中点B在抛物线上,则|BF|=( )ABCD6 (理)已知tan=2,则=( )ABCD7 若A(3,6),B(5,2),C(6,y)三点共线,则y=( )A13B13C9D98 已知集合A=y|y=x2+2x3,则有( )AABBBACA=BDAB=9 已知F1,F2是椭圆和双曲线的公共焦点,M是它们的一个公共点,且F1MF2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A2BCD410如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A BC D【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力11已知函数f(x)的图象如图,则它的一个可能的解析式为( )Ay=2By=log3(x+1)Cy=4Dy=12长方体ABCDA1B1C1D1中,AA1=2AB=2AD,G为CC1中点,则直线A1C1与BG所成角的大小是( )A30B45C60D120二、填空题13在ABC中,已知=2,b=2a,那么cosB的值是14求函数在区间上的最大值15设复数z满足z(23i)=6+4i(i为虚数单位),则z的模为16若非零向量,满足|+|=|,则与所成角的大小为17命题:“xR,都有x31”的否定形式为18已知点A(1,1),B(1,2),C(2,1),D(3,4),求向量在方向上的投影三、解答题19在极坐标系内,已知曲线C1的方程为22(cos2sin)+4=0,以极点为原点,极轴方向为x正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C2的参数方程为(t为参数)()求曲线C1的直角坐标方程以及曲线C2的普通方程;()设点P为曲线C2上的动点,过点P作曲线C1的切线,求这条切线长的最小值20已知f(x)=(1+x)m+(1+2x)n(m,nN*)的展开式中x的系数为11(1)求x2的系数取最小值时n的值(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和21某电脑公司有6名产品推销员,其工作年限与年推销金额的数据如表:推销员编号12345工作年限x/年35679推销金额y/万元23345(1)以工作年限为自变量x,推销金额为因变量y,作出散点图;(2)求年推销金额y关于工作年限x的线性回归方程;(3)若第6名推销员的工作年限为11年,试估计他的年推销金额 22已知函数f(x)=a,(1)若a=1,求f(0)的值;(2)探究f(x)的单调性,并证明你的结论;(3)若函数f(x)为奇函数,判断|f(ax)|与f(2)的大小23(本小题满分12分)一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号()求第一次或第二次取到3号球的概率;()设为两次取球时取到相同编号的小球的个数,求的分布列与数学期望24在ABC中,内角A,B,C所对的边分别为a,b,c,已知sinAsinC(cosB+sinB)=0(1)求角C的大小; (2)若c=2,且ABC的面积为,求a,b的值双桥区第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】考点:函数的对称性,导数与单调性【名师点睛】函数的图象是研究函数性质的一个重要工具,通过函数的图象研究问题是数形结合思想应用的不可或缺的重要一环,因此掌握函数的图象的性质是我们在平常学习中要重点注意的,如函数满足:或,则其图象关于直线对称,如满足,则其图象关于点对称2 【答案】B【解析】当x0时,f(x)=,由f(x)=x3a2,x2a2,得f(x)a2;当a2x2a2时,f(x)=a2;由f(x)=x,0xa2,得f(x)a2。当x0时,。函数f(x)为奇函数,当x0时,。对xR,都有f(x1)f(x),2a2(4a2)1,解得:。故实数a的取值范围是。3 【答案】A【解析】解:由,得又,解得故选:A【点评】本题考查了平行向量与共线向量,考查向量的性质,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化,该题是基础题4 【答案】C【解析】解:集合A=1,2,3,集合B=1,1,3,集合S=AB=1,3,则集合S的子集有22=4个,故选:C【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础5 【答案】D【解析】解:依题意可知F坐标为(,0)B的坐标为(,1)代入抛物线方程得=1,解得p=,抛物线准线方程为x=,所以点B到抛物线准线的距离为=,则B到该抛物线焦点的距离为故选D6 【答案】D【解析】解:tan=2, =故选D7 【答案】D【解析】解:由题意, =(8,8),=(3,y+6),8(y+6)24=0,y=9,故选D【点评】本题考查三点共线,考查向量知识的运用,三点共线转化为具有公共点的向量共线是关键8 【答案】B【解析】解:y=x2+2x3=(x+1)24,y4则A=y|y4x0,x+2=2(当x=,即x=1时取“=”),B=y|y2,BA故选:B【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项9 【答案】 C【解析】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(aa1),半焦距为c,由椭圆和双曲线的定义可知,设|MF1|=r1,|MF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2F1MF2=,由余弦定理可得4c2=(r1)2+(r2)22r1r2cos,在椭圆中,化简为即4c2=4a23r1r2,即=1,在双曲线中,化简为即4c2=4a12+r1r2,即=1,联立得, +=4,由柯西不等式得(1+)(+)(1+)2,即(+)24=,即+,当且仅当e1=,e2=时取等号即取得最大值且为故选C【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键难度较大10【答案】C【解析】还原几何体,由三视图可知该几何体是四棱锥,且底面为长,宽的矩形,高为3,且平面,如图所示,所以此四棱锥表面积为 ,故选C11【答案】C【解析】解:由图可得,y=4为函数图象的渐近线,函数y=2,y=log3(x+1),y=的值域均含4,即y=4不是它们的渐近线,函数y=4的值域为(,4)(4,+),故y=4为函数图象的渐近线,故选:C【点评】本题考查的知识点是函数的图象,函数的值域,难度中档12【答案】C【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AA1=2AB=2AD=2,A1(1,0,2),C1(0,1,2),=(1,1,0),B(1,1,0),G(0,1,1),=(1,0,1),设直线A1C1与BG所成角为,cos=,=60故选:C【点评】本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力,解题时要注意向量法的合理运用二、填空题13【答案】 【解析】解: =2,由正弦定理可得:,即c=2ab=2a,=cosB=故答案为:【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题14【答案】 【解析】解:f(x)=sin2x+sinxcosx=+sin2x=sin(2x)+又x,2x,sin(2x),1,sin(2x)+1,即f(x)1,故f(x)在区间,上的最大值为故答案为:【点评】本题考查二倍角的正弦与余弦,考查辅助角公式,着重考查正弦函数的单调性与最值,属于中档题15【答案】2 【解析】解:复数z满足z(23i)=6+4i(i为虚数单位),z=,|z|=2,故答案为:2【点评】本题主要考查复数的模的定义,复数求模的方法,利用了两个复数商的模等于被除数的模除以除数的模,属于基础题16【答案】90 【解析】解:=与所成角的大小为90故答案为90【点评】本题用向量模的平方等于向量的平方来去掉绝对值17【答案】x0R,都有x031 【解析】解:因为全称命题的否定是特称命题所以,命题:“xR,都有x31”的否定形式为:命题:“x0R,都有x031”故答案为:x0R,都有x031【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查18【答案】 【解析】解:点A(1,1),B(1,2),C(2,1),D(3,4),向量=(1+1,21)=(2,1),=(3+2,4+1)=(5,5);向量在方向上的投影是=三、解答题19【答案】 【解析】【专题】计算题;直线与圆;坐标系和参数方程【分析】()运用x=cos,y=sin,x2+y2=2,即可得到曲线C1的直角坐标方程,再由代入法,即可化简曲线C2的参数方程为普通方程;()可经过圆心(1,2)作直线3x+4y15=0的垂线,此时切线长最小再由点到直线的距离公式和勾股定理,即可得到最小值【解答】解:()对于曲线C1的方程为22(cos2sin)+4=0,可化为直角坐标方程x2+y22x+4y+4=0,即圆(x1)2+(y+2)2=1;曲线C2的参数方程为(t为参数),可化为普通方程为:3x+4y15=0()可经过圆心(1,2)作直线3x+4y15=0的垂线,此时切线长最小则由点到直线的距离公式可得d=4,则切线长为=故这条切线长的最小值为【点评】本题考查极坐标方程、参数方程和直角坐标方程、普通方程的互化,考查直线与圆相切的切线长问题,考查运算能力,属于中档题20【答案】 【解析】【专题】计算题【分析】(1)利用二项展开式的通项公式求出展开式的x的系数,列出方程得到m,n的关系;利用二项展开式的通项公式求出x2的系数,将m,n的关系代入得到关于m的二次函数,配方求出最小值(2)通过对x分别赋值1,1,两式子相加求出展开式中x的奇次幂项的系数之和【解答】解:(1)由已知Cm1+2Cn1=11,m+2n=11,x2的系数为Cm2+22Cn2=+2n(n1)=+(11m)(1)=(m)2+mN*,m=5时,x2的系数取得最小值22,此时n=3(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,f(x)=(1+x)5+(1+2x)3设这时f(x)的展开式为f(x)=a0+a1x+a2x2+a5x5,令x=1,a0+a1+a2+a3+a4+a5=25+33,令x=1,a0a1+a2a3+a4a5=1,两式相减得2(a1+a3+a5)=60,故展开式中x的奇次幂项的系数之和为30【点评】本题考查利用二项展开式的通项公式求二项展开式的特殊项问题;利用赋值法求二项展开式的系数和问题21【答案】 【解析】解:(1)依题意,画出散点图如图所示,(2)从散点图可以看出,这些点大致在一条直线附近,设所求的线性回归方程为则,年推销金额y关于工作年限x的线性回归方程为=0.5x+0.4(3)由(2)可知,当x=11时, =0.5x+0.4=0.511+0.4=5.9(万元)可以估计第6名推销员的年推销金额为5.9万元 22【答案】 【解析】解:(1)a=1时:f(0)=1=;(2)f(x)的定义域为R任取x1x2R且x1x2则f(x1)f(x2)=aa+=y=2x在R是单调递增且x1x202x12x2,2x12x20,2x1+10,2x2+10,f(x1)f(x2)0即f(x1)f(x2),f(x)在R上单调递增(3)f(x)是奇函数f(x)=f(x),即a=a+,解得:a=1f(ax)=f(x)又f(x)在R上单调递增x2或x2时:|f(x)|f(2),x=2时:|f(x)|=f(2),2x2时:|f(x)|f(2)【点评】本题考查的是函数单调性、奇偶性等知识的综合问题在解答的过程当中充分体现了计算的能力、单调性定义的应用以及问题转化的能力值得同学们体会和反思23【答案】 【解析】解:()事件“第一次或第二次取到3号球的概率”的对立事件为“二次取球都没有取到3号球”,所求概率为(6分)() ,(9分)故的分布列为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校区运营基础知识培训课件
- 2025年福州市红庙岭垃圾综合处理中心招聘考试笔试试题(含答案)
- 医疗机构医疗废物综合管理考核试题及答案
- 2025年药物临床试验及伦理相关知识培训试题及答案
- 2024年劳务员之劳务员基础知识模考模拟试题【附答案】
- 树的速写课件
- 重症护理知识考核试题及答案
- 临床护理技术操作常见并发症预防及处理习题(有答案)
- 2025年国家网络安全宣传周知识竞赛题库(试题及答案)
- (2025)全国安全生产月《安全知识》必刷题库及答案
- 特殊人群服务管理制度
- 2025-2030中国磁悬浮离心鼓风机行业市场发展趋势与前景展望战略研究报告
- 高等教育自学考试《00018计算机应用基础》模拟试卷一
- 2025年公共卫生检验士考试试题及答案
- 危化品泄漏的应急处置流程
- 2025-2030中国机场酒店行业市场前瞻与未来投资战略分析研究报告
- 医保基金监管与支付资格管理专题培训
- 员工关系管理培训课件
- 2023秸秆类生物质能源原料储存规范第1部分:存放
- 餐厅收货流程
- 政府招商投资合作框架协议书模板6篇
评论
0/150
提交评论