




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷枣阳市三中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知,则fff(2)的值为( )A0B2C4D82 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S的值为( )A9.6B7.68C6.144D4.91523 如图,一个底面半径为R的圆柱被与其底面所成角是30的平面所截,截面是一个椭圆,则该椭圆的离心率是( )ABCD4 奇函数f(x)在(,0)上单调递增,若f(1)=0,则不等式f(x)0的解集是( )A(,1)(0,1)B(,1)(1,+)C(1,0)(0,1)D(1,0)(1,+)5 已知函数,则( )A B C1 D【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力6 设集合A1,2,3,B4,5,Mx|xab,aA,bB,则M中元素的个数为()。A3B4C5D67 如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=x的图象是( )ABCD8 若集合A=x|2x1,B=x|0x2,则集合AB=( )Ax|1x1Bx|2x1Cx|2x2Dx|0x19 设曲线y=ax2在点(1,a)处的切线与直线2xy6=0平行,则a=( )A1BCD110已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )ABCD =0.08x+1.2311设函数是的导数.某同学经过探究发现,任意一个三次函数都有对称中心,其中满足.已知函数,则( )A B C D111112直线l将圆x2+y22x+4y=0平分,且在两坐标轴上的截距相等,则直线l的方程是( )Axy+1=0,2xy=0Bxy1=0,x2y=0Cx+y+1=0,2x+y=0Dxy+1=0,x+2y=0二、填空题13已知f(x+1)=f(x1),f(x)=f(2x),方程f(x)=0在0,1内只有一个根x=,则f(x)=0在区间0,2016内根的个数14观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律,第n个等式为15如图为长方体积木块堆成的几何体的三视图,此几何体共由块木块堆成16长方体中,对角线与棱、所成角分别为、,则 17设Sn是数列an的前n项和,且a1=1, =Sn则数列an的通项公式an=18给出下列命题:把函数y=sin(x)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin(2x);若,是第一象限角且,则coscos;x=是函数y=cos(2x+)的一条对称轴;函数y=4sin(2x+)与函数y=4cos(2x)相同;y=2sin(2x)在是增函数;则正确命题的序号三、解答题19已知二次函数f(x)=x2+2bx+c(b,cR)(1)若函数y=f(x)的零点为1和1,求实数b,c的值;(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(3,2),(0,1)内,求实数b的取值范围20设函数f(x)=lg(axbx),且f(1)=lg2,f(2)=lg12(1)求a,b的值(2)当x1,2时,求f(x)的最大值(3)m为何值时,函数g(x)=ax的图象与h(x)=bxm的图象恒有两个交点 21已知函数f(x)=|xa|(1)若f(x)m的解集为x|1x5,求实数a,m的值(2)当a=2且0t2时,解关于x的不等式f(x)+tf(x+2) 22(本题满分12分)设向量,记函数.(1)求函数的单调递增区间;(2)在锐角中,角的对边分别为.若,求面积的最大值.23(本小题满分12分)如图,在四棱锥中,底面是菱形,且点是棱的中点,平面与棱交于点(1)求证:;(2)若,且平面平面,求平面与平面所成的锐二面角的余弦值【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.24某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰 好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望枣阳市三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:20f(2)=0f(f(2)=f(0)0=0f(0)=2即f(f(2)=f(0)=220f(2)=22=4即ff(2)=f(f(0)=f(2)=4故选C2 【答案】C【解析】解:由题意可知,设汽车x年后的价值为S,则S=15(120%)x,结合程序框图易得当n=4时,S=15(120%)4=6.144故选:C3 【答案】A【解析】解:因为底面半径为R的圆柱被与底面成30的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R,长半轴为: =,a2=b2+c2,c=,椭圆的离心率为:e=故选:A【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力4 【答案】A【解析】解:根据题意,可作出函数图象:不等式f(x)0的解集是(,1)(0,1)故选A5 【答案】B【解析】,故选B6 【答案】B【解析】由题意知xab,aA,bB,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B7 【答案】D【解析】解:幂函数y=x为增函数,且增加的速度比价缓慢,只有符合故选:D【点评】本题考查了幂函数的图象与性质,属于基础题8 【答案】D【解析】解:AB=x|2x1x|0x2=x|0x1故选D9 【答案】A【解析】解:y=2ax,于是切线的斜率k=y|x=1=2a,切线与直线2xy6=0平行有2a=2a=1故选:A【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率10【答案】C【解析】解:法一:由回归直线的斜率的估计值为1.23,可排除D由线性回归直线方程样本点的中心为(4,5),将x=4分别代入A、B、C,其值依次为8.92、9.92、5,排除A、B法二:因为回归直线方程一定过样本中心点,将样本点的中心(4,5)分别代入各个选项,只有C满足,故选C【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程11【答案】D【解析】 ,故选D. 1考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数都有对称中心”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出的对称中心后再利用对称性和的.第卷(非选择题共90分)12【答案】C【解析】解:圆x2+y22x+4y=0化为:圆(x1)2+(y+2)2=5,圆的圆心坐标(1,2),半径为,直线l将圆x2+y22x+4y=0平分,且在两坐标轴上的截距相等,则直线l经过圆心与坐标原点或者直线经过圆心,直线的斜率为1,直线l的方程是:y+2=(x1),2x+y=0,即x+y+1=0,2x+y=0故选:C【点评】本题考查直线与圆的位置关系,直线的截距式方程的求法,考查计算能力,是基础题二、填空题13【答案】2016 【解析】解:f(x)=f(2x),f(x)的图象关于直线x=1对称,即f(1x)=f(1+x)f(x+1)=f(x1),f(x+2)=f(x),即函数f(x)是周期为2的周期函数,方程f(x)=0在0,1内只有一个根x=,由对称性得,f()=f()=0,函数f(x)在一个周期0,2上有2个零点,即函数f(x)在每两个整数之间都有一个零点,f(x)=0在区间0,2016内根的个数为2016,故答案为:201614【答案】n+(n+1)+(n+2)+(3n2)=(2n1)2 【解析】解:观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49等号右边是12,32,52,72第n个应该是(2n1)2左边的式子的项数与右边的底数一致,每一行都是从这一个行数的数字开始相加的,照此规律,第n个等式为n+(n+1)+(n+2)+(3n2)=(2n1)2,故答案为:n+(n+1)+(n+2)+(3n2)=(2n1)2【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题15【答案】4 【解析】解:由三视图可以看出此几何体由两排两列,前排有一个方块,后排左面一列有两个木块右面一列有一个,故后排有三个,故此几何体共有4个木块组成故答案为:416【答案】【解析】试题分析:以为斜边构成直角三角形:,由长方体的对角线定理可得:.考点:直线与直线所成的角【方法点晴】本题主要考查了空间中直线与直线所成的角的计算问题,其中解答中涉及到长方体的结构特征、直角三角形中三角函数的定义、长方体的对角线长公式等知识点的考查,着重考查学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直角三角形中三角函数的定义和长方体的对角线长定理是解答的关键17【答案】 【解析】解:Sn是数列an的前n项和,且a1=1, =Sn,Sn+1Sn=Sn+1Sn,=1, =1,是首项为1,公差为1的等差数列,=1+(n1)(1)=nSn=,n=1时,a1=S1=1,n2时,an=SnSn1=+=an=故答案为:18【答案】 【解析】解:对于,把函数y=sin(x)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin(2x),故正确对于,当,是第一象限角且,如=30,=390,则此时有cos=cos=,故错误对于,当x=时,2x+=,函数y=cos(2x+)=1,为函数的最小值,故x=是函数y=cos(2x+)的一条对称轴,故正确对于,函数y=4sin(2x+)=4cos(2x+)=4cos(2)=4cos(2x),故函数y=4sin(2x+)与函数y=4cos(2x)相同,故正确对于,在上,2x,函数y=2sin(2x)在上没有单调性,故错误,故答案为:三、解答题19【答案】 【解析】解:(1)1,1是函数y=f(x)的零点,解得b=0,c=1(2)f(1)=1+2b+c=0,所以c=12b令g(x)=f(x)+x+b=x2+(2b+1)x+b+c=x2+(2b+1)xb1,关于x的方程f(x)+x+b=0的两个实数根分别在区间(3,2),(0,1)内,即解得b,即实数b的取值范围为(,)【点评】本题考查了二次函数根与系数得关系,零点的存在性定理,属于中档题20【答案】 【解析】解:(1)f(x)=lg(axbx),且f(1)=lg2,f(2)=lg12,ab=2,a2b2=12,解得:a=4,b=2;(2)由(1)得:函数f(x)=lg(4x2x),当x1,2时,4x2x2,12,故当x=2时,函数f(x)取最大值lg12,(3)若函数g(x)=ax的图象与h(x)=bxm的图象恒有两个交点则4x2x=m有两个解,令t=2x,则t0,则t2t=m有两个正解;则,解得:m(,0)【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键21【答案】 【解析】解:(1)f(x)m,|xa|m,即amxa+m,f(x)m的解集为x|1x5,解得a=2,m=3(2)当a=2时,函数f(x)=|x2|,则不等式f(x)+tf(x+2)等价为|x2|+t|x|当x2时,x2+tx,即t2与条件0t2矛盾当0x2时,2x+tx,即0,成立当x0时,2x+tx,即t2恒成立综上不等式的解集为(,【点评】本题主要考查绝对值不等式的解法,要求熟练掌握绝对值的化简技巧 22【答案】【解析】【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,难度为中等.23【答案】【解析】平面,是平面的一个法向量,24【答案】 【解析】【专题】概率与统计【分析】(I)确定三角形地块的内部和边界上的作物株数,分别求出基本事件的个数,即可求它们恰好“相近”的概率;(II)确定变量的取值,求出相应的概率,从而可得年收获量的分布列与数学期望【解答】解:(I)所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8,从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率为=;(II)先求从所种作物中随机选取
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国废包装膜行业市场发展趋势与前景展望战略研究报告
- 三只小猪课件导读
- 小儿静脉输液课件
- 深度解读技术管理面试题库:洞察职场前沿技术
- 大班健康能干的小脚丫教案
- 大学生辩论赛流程方案策划书
- 职场达人必看:高级面试常见问题及答案精 编
- 期货从业资格之《期货法律法规》强化训练模考卷含答案详解(培优b卷)
- 大三学生实习个人情况总结
- 在庆祝教师节暨总结表彰大会上的发言稿
- 宁德新能源verify测试题库
- 乡镇道路清扫合同范例
- 治安管理处罚法课件
- 2024年全国职业院校技能大赛中职组(母婴照护赛项)考试题库(含答案)
- 住友变频器说明书-翻译
- 2024品牌服务合同范本
- 常见职业病危害和预防基础知识
- 2025年九省联考新高考 物理试卷(含答案解析)
- 办公耗材项目验收方案
- 2025届广州市高三年级阶段训练(8月市调研摸底) 数学试卷(含答案)
- 《旅馆建筑设计原理》课件
评论
0/150
提交评论