




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五讲 验证性因素分析,因素分析的基本思想:是将实测的多个指标,用少数几个潜在的指标(因素)的线性组合来表示。 因素分析主要应用在,一、寻求基本结构,简化观测系统;二、对变量或样本进行分类。 发展:1904年Chales Spearman提出因素分析思想,探索性因素分析(EFA)获得巨大发展和运用;1966年,Bock和Bargmann最早提出了“验证性因素分析模型”。近2、30年来,验证性因素分析(CFA)逐渐成为因素分析研究的主要方向和重要内容。验证性因素分析是对已有的理论模型与数据拟合程度的一种验证。 区别:CFA是在EFA的基础上发展起来的,EFA带有一种不确定性(因素数量、因素间关系未知,因素负荷、因素相关和唯一方差待估);CFA更符合科学研究假设修正验证的基本过程(可以根据已有知识或研究,假设因素的数量和关系,从而减少待估量,并可以对假设的模型进行验证)。,验证性因素分析的基本假设,1.公共因素之间可以相关也可以无关; 2.观测变量可以只受某一个或几个公共因素的影响而不必受所有公共因素的影响; 3.特殊因素之间可以有关,还可以出现不存在误差因素的观测变量; 4.公共因素和特殊因素之间相互独立,100名学生在9个不同学科间的相关系数,主要的功能,进行效度的验证。利用一组题目与心理概念间关系的讨论,研究者得以提出测量的证据,探讨潜在特质的因素结构与存在的形式,建立量表的结构效度。 简化测量的内容。研究者可以根据每一个因素的主要概念,选用最具有代表性的题目来测量特质,以最少的题项,进行最直接恰当的测量,减少被试作答时间,减少疲劳效果与填答抗拒。 用来协助测验编制,进行项目分析,检验试题的优劣好坏。,因素与共变结构,概念或因素(factor)隐含在许多现实可观察的事物背后,虽然难以直接测量,但是可以从复杂的外在现象中计算、估计、或抽取得到。 其数学原理是共变(covariance)的抽取。而受到同一个概念影响的测量分数,共同相关的部份,就是概念所在的部份。概念则是由被称为因素的共同相关的部份的得分来表示。,验证性因素分析中评价模型与数据拟合程度时常用的拟合指标,(1)(chi-square)检验。这一指标容易受样本容量的影响,样本量大时,容易达到显著水平,几乎拒绝所有拟合较好的模型。一般用/df作为替代性检验指数。/df3表示模型整体拟合度较好,/df5表示模型整体可以接受,/df10表示整体模型非常差。 (2)RMSEA。若RMSEA取值小于等于0.05,表示数据与定义模型拟合较好; RMSEA取值小于等于0.08时,表示模型与数据的拟合程度可以接受。,(3)其他拟合指数。常用的有 “拟合良好性指标” (goodness of fit index,简称GFI)、 “调整拟合良好性指标”(adjusted goodness of fit index,简称AGFI)、 “常规拟合指标”(normal of fit index,简称NFI)、 “非常规拟合指标”(non-normal of fit index,简称NNFI)、 “比较拟合指标”(comparative fit index,简称CFI)、 “标准化残差均方根” (standardized root mean square residual,简称SRMR)、 “省俭性指标” (parsimony normed fit index,简称PNFI)。,这几种拟合指数的值在0和1之间,除SRMR是愈接近0愈好外,其它指数均为愈接近1愈好,愈接近1表示理论模型愈能说明原始数据间的关系,模型的拟合度愈好。虽然有许多指标可用来检验模型的优劣,但没有一个指标可以作为完全确定的标准,因此Bollen(1989)建议最好慎重地报告多项测量结果,而不要只依赖于哪一种选择。在许多模型需要检验和比较时,尤其是这样,验证性因素分析(CFA),常用软件:Amos、Liserl。 CFA的一般步骤:1.模型定义,2.模型识别,3.参数估计,4.模型评价,5.模型修正。 验证性因素分析的复杂模型和应用 (一)验证性因素分析在测量上的应用 1.构想效度和项目信度;2.多特质多方法;3.层次实证性因素分析。 (二)高阶因素分析 (三)多样本比较 (四)均数差异检验,结构方程建模和分析步骤,验证模型与产生模型 纯粹验证(strictly confirmatory,SC) 心目中只有一个模型 这类分析不多,无论接受还是拒绝,仍希望有更佳的选择 选择模型(alternative models,AM) 从拟合的优劣,决定那个模型最为可取 但我们仍常做一些轻微修改,成为MG类的分析,产生模型(model generating,MG) 先提出一个或多个基本模型 基于理论或数据,找出模型中拟合欠佳的部份 修改模型,通过同一或其他样本,检查修正模型的拟合程度,目的在于产生一个最佳模型,结构方程分析步骤 模型建构(model specification),指定 观测变量与潜变量(因子)的关系 各潜变量间的相互关系(指定哪些因子间有相关或直接效应) 在复杂的模型中,可以限制因子负荷或因子相关系数等参数的数值或关系(例如,2个因子间相关系数等于0.3;2个因子负荷必须相等) 模型拟合(model fitting,通常 ML) 主要的是模型参数的估计(e.g.,回归分析,通常用所最小二乘方法拟合模型,相应的参数估计称为最小二乘估计 ),模型评价(model assessment) 结构方程的解是否适当( proper),估计是否收敛,各参数估计值是否在合理范围内(例如,相关系数在 +1与1之内) 参数与预设模型的关系是否合理。当然数据分析可能出现一些预期以外的结果,但各参数绝不应出现一些互相矛盾,与先验假设有严重冲突的现象 检视多个不同类型的整体拟合指数,如 NNFI、CFI、RMSEA 和等 含较多因子的复杂模型中,无论是否删去某一两个路径(固定它们为0),对整个模型拟合影响不大 应当先检查每一个测量模型,模型修正(model modification) 依据理论或有关假设,提出一个或数个合理的先验模型 检查潜变量(因子)与指标(题目)间的关系,建立测量模型 可能增删或重组题目。 若用同一样本数据去修正重组测量模型,再检查新模型的拟合指数,这十分接近探索性因素分析(exploratory factor analysis,EFA),所得拟合指数,不足以说明数据支持或验证模型 可以循序渐进地,每次只检查含2个因子的模型,确立测量模型部分的合理后,最后才将所有因子合并成预设的先验模型,作一个总体检查。 对每一模型,检查标准误、t值、标准化残差、修正指数、参数期望改变值、及各种拟合指数,据此修改模型并重复步骤。 这最后的模型是依据某一个样本数据修改而成,最好用另一个独立样本,交互确定(cross-validate),参数估计和拟合函数,目标是参数使得隐含协方差矩阵 与样本协方差矩阵 “差距”最小 称为拟合函数(fit function) 多种拟合函数,参数估计值可能不同 工具变量 (IV, instrumental variable); 两阶段最小二乘 ( TSLS, two-stage least squares); 无加权最小二乘 (ULS, unweighted least squares); 最大似然 (ML, maximum likelihood); 广义最小二乘 (GLS, generalized least squares); 一般加权最小二乘 (WLS, generally weighted least sq) 对角加权最小二乘 (DWLS, diagonally weighted least sq),专题讨论涉及数据的问题,样本容量 每个因子上多设计几题,预试协助删去一些不好的题目 最后每个因子应有3个或更多的题目 数据类型 绝大部份分析基于皮尔逊(Pearson)相关 来自等级(顺序)量表(ordinal scale),改用多项(polyserial)相关系数,并与渐近方差矩阵(asymptotical covariance matrix,ACM)合用,以WLS法拟合模型,除非N很大,额外需要的ACM矩阵多不稳定,可否应用相关矩阵作分析? SEM建立在方差和协方差分析上 用相关矩阵,大多数情况下正确 在某些况下并不正确(见Cudeck, 1989 ): 限制因子方差为 1,同时限制某指标的因子负荷不等于零 同一个因子,限制其两个或以上指标的因子负荷,不等于零 同一个因子的两个或以上指标,限制其因子负荷相同 不同因子的两个或以上指标,限制其因子负荷相同 限制两个或以上内生潜变量的误差相等,专题讨论涉及模型拟合的问题,忽略测量误差所引致的错误 方差(变异量) x变异量 变异量 误差变异量 除非 等于零,传统统计高估了变量的真正变异量 相关和回归参数,单指标潜变量 不能同时估计LX 与TD 对相关矩阵 FI LX 4,3 TD 4,4 VA .922 LX 4,3 ! SQRT(.85)=.922 VA .15 TD 4,4 ! (1-0.85)=0.15 误差相关 除非在特殊设计 (重复测量multi-wave panel),刻意容许误差相关 在一般研究,通常不容许误差可以相关,为甚么要考虑等同模型? 以同样个数的参数(t),用不同组合产生许多不同模型,而其中再生协方差矩阵,完全相同 换句话说,同样个数的参数(t)产生多个与样本数据有相同拟合程度、但结构不同的模型,结构方程是否验证变量间的因果关系? 严格来说,非经设计用以探讨变量间因果效应的研
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度跨境电商园区招商引资专业代理合同
- 2025年度电子商务数据分析与优化合伙人合作协议书
- 2025年新能源叉车购销与融资租赁一揽子合同
- 2025款茶叶有机转换项目合作销售协议
- 虞姣2025年度离婚后财产分配及子女教育金使用监管协议
- 2025年冷链物流运输及仓储服务合同样本
- 2025年度冷链物流运输中介合作协议
- 2025年度自卸车二手市场交易与综合评估合同
- 内科循环题库及答案
- 南宋题库及答案
- 2025年秋季开学教师大会上教学副校长讲话:回到课堂的原点走向教学的深处
- 2025事业单位招聘考试时事政治考试题库及答案(考点梳理)
- 2025年特种设备监管b证考试试题及答案
- 2025年少先队知识竞赛试题库附答案
- 2025年事业单位工勤技能-湖北-湖北防疫员二级(技师)历年参考题库含答案解析(5卷)
- 一键报警管理办法
- GB/T 9775-2025纸面石膏板
- 2024年广州越秀区招聘社区专职工作人员真题
- 防蚊培训课件
- 北方民族大学《高等数学Ⅱ》2025-2026学年期末试卷(A卷)
- 弥漫性大B细胞淋巴瘤病例讨论
评论
0/150
提交评论