




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平面向量及其应用【2019年高考考纲解读】高考对本内容的考查主要有:平面向量这部分内容在高考中的要求大部分都为B级,只有平面向量的应用为A级要求,平面向量的数量积为C级要求,应特别重视试题类型可能是填空题,同时在解答题中经常与三角函数综合考查,构成中档题.【重点、难点剖析】 1向量的概念(1)零向量模的大小为0,方向是任意的,它与任意非零向量都共线,记为0.(2)长度等于1个单位长度的向量叫单位向量,a的单位向量为.(3)方向相同或相反的向量叫共线向量(平行向量)(4)如果直线l的斜率为k,则a(1,k)是直线l的一个方向向量(5)|b|cosa,b叫做b在向量a方向上的投影2两非零向量平行、垂直的充要条件设a(x1,y1),b(x2,y2),(1)若abab(0);abx1y2x2y10.(2)若abab0;abx1x2y1y20.3平面向量的性质(1)若a(x,y),则|a|.(2)若A(x1,y1),B(x2,y2),则|A|. (3)若a(x1,y1),b(x2,y2),为a与b的夹角,则cos .4当向量以几何图形的形式出现时,要把这个几何图形中的一个向量用其余的向量线性表示,就要根据向量加减法的法则进行,特别是减法法则很容易使用错误,向量(其中O为我们所需要的任何一个点),这个法则就是终点向量减去起点向量5根据平行四边形法则,对于非零向量a,b,当|ab|ab|时,平行四边形的两条对角线长度相等,此时平行四边形是矩形,条件|ab|ab|等价于向量a,b互相垂直,反之也成立6两个向量夹角的范围是0,在使用平面向量解决问题时要特别注意两个向量夹角可能是0或的情况,如已知两个向量的夹角为钝角时,不单纯就是其数量积小于零,还要求不能反向共线【题型示例】题型一、平面向量的线性运算【例1】(2018全国卷)已知向量a(1,2),b(2,2),c(1,)若c(2ab),则_.【解析】由已知得2ab(4,2)又c(1,),c(2ab),所以420,解得.【答案】【变式探究】 (2018全国卷)在ABC中,AD为BC边上的中线,E为AD的中点,则()A. B.C. D.【变式探究】【2016高考新课标2理数】已知向量,且,则( )(A)8 (B)6 (C)6 (D)8【答案】D【解析】向量,由得,解得,故选D. 【举一反三】设D为ABC所在平面内一点,3,则()A. B.C. D.解析3,3(),即43,.答案A【变式探究】在ABC中,点M,N满足2,.若xy,则x_;y_解析(),x,y.答案【变式探究】 已知e1,e2是不共线向量,ame12e2,bne1e2,且mn0,若ab,则等于()A B. C2 D2【解析】ab,ab,即me12e2(ne1e2),则故2.【答案】C【变式探究】已知P为ABC所在平面内一点,D为AB的中点,若2(1),且PBA与PBC的面积相等,则实数的值为_ 【感悟提升】平面向量的运算主要包括向量运算的几何意义、向量的坐标运算以及数量积的运算律的应用等(1)已知条件中涉及向量运算的几何意义应数形结合,利用平行四边形、三角形法则求解(2)已知条件中涉及向量的坐标运算,需建立坐标系,用坐标运算公式求解(3)解决平面向量问题要灵活运用向量平行与垂直的充要条件列方程(4)正确理解并掌握向量的概念及运算;强化“坐标化”的解题意识;注重数形结合思想、方程思想与转化思想的应用注意:在利用数量积的定义计算时,要善于将相关向量分解为图形中的已知向量进行计算【变式探究】设D,E分别是ABC的边AB,BC上的点,ADAB,BEBC.若12(1,2为实数),则12的值为_【答案】【解析】如图,(),则1,2,12.【规律方法】在一般向量的线性运算中,只要把其中的向量当作字母,其运算类似于代数中合并同类项的运算,在计算时可以进行类比本例中的第(1)题就是把向量用,表示出来,再与题中已知向量关系式进行对比,得出相等关系式,可求相应的系数题型二、平面向量的数量积 【例2】(2018上海卷)在平面直角坐标系中,已知点A(1,0)、B(2,0),E、F是y轴上的两个动点,且|2,则的最小值为_【解析】设E(0,m),F(0,n),又A(1,0),B(2,0),(1,m),(2,n)2mn,又知|2,|mn|2.当mn2时,mn2(n2)n2n22n2(n1)23.当n1,即E的坐标为(0,1),F的坐标为(0,1)时,取得最小值3.当mn2时,mn2(n2)n2n22n2(n1)23.当n1,即E的坐标为(0,1),F的坐标为(0,1)时,取得最小值3.综上可知,的最小值为3.【答案】3【变式探究】(2017全国卷)已知ABC是边长为2的等边三角形,P为平面ABC内一点,则()的最小值是()A2 B C D1【解析】解法一:设BC的中点为D,AD的中点为E,则有2,则()22()()2(22)而22,当P与E重合时,2有最小值0,故此时()取最小值,最小值为222.解法二:以AB所在直线为x轴,AB的中点为原点建立平面直角坐标系,如图,则A(1,0),B(1,0),C(0,),设P(x,y),取BC的中点D,则D.()22(1x,y)22.因此,当x,y时,()取得最小值,为2,故选B.【答案】B【变式探究】已知|a|1,b(1,1)且a(ab),则向量a与向量b的夹角为()A. B. C. D.【解析】设向量a与向量b的夹角为,因为a(ab),所以a(ab)0,即|a|2ab1|a|b|cos1cos0,cos,故选D. 【答案】D【变式探究】已知点A(1,1),B(1,2),C(2,1),D(3,4),则向量在方向上的投影是()A3 B C3 D.【解析】依题意得,(2,1),(5,5),(2,1)(5,5)15,|,因此向量在方向上的投影是3,选A.【答案】A【变式探究】已知向量a(1,2),b(3,6),若向量c满足c与b的夹角为120,c(4ab)5,则|c|()A1 B. C2 D2【解析】依题意可得|a|,|b|3,ab.由c(4ab)5,可得4acbc5.由c与b的夹角为120,可得c与a的夹角为60,则有bc|b|c|cos120|c|3|c|,ac|a|c|cos60|c|c|,所以4|c|c|5,解得|c|2,故选D.【答案】D【变式探究】如图所示,在梯形ABCD中,ABCD,CD2,BAD,若2,则_.【举一反三】已知菱形ABCD 的边长为a,ABC60 ,则()Aa2 Ba2C.a2 D.a2解析如图所示,由题意,得BCa,CDa,BCD120.BD2BC2CD22BCCDcos 120a2a22aa3a2,BDa.|cos 30a2a2.答案D【变式探究】ABC是边长为2的等边三角形,已知向量a,b满足2a,2ab,则下列结论正确的是()A|b|1 BabCab1 D(4ab)解析由于ABC是边长为2的等边三角形;()()0,即()0,(4ab),即(4ab),故选D.答案D【规律方法】求数量积的最值,一般要先利用向量的线性运算,尽可能将所求向量转化为长度和夹角已知的向量,利用向量的数量积运算建立目标函数,利用函数知识求解最值【变式探究】设四边形ABCD为平行四边形,|6,|4,若点M,N满足3,2,则()A20 B. 15 C9 D6解析,(43)(43)(16292)(1662942)9,选C.答案C题型三、平面向量基本定理及应用例3(2017全国卷)在矩形ABCD中,AB1,AD2,动点P在以点C为圆心且与BD相切的圆上若,则的最大值为()A3 B2 C. D2【解析】分别以CB、CD所在的直线为x轴、y轴建立直角坐标系,则A(2,1),B(2,0),D(0,1)点P在以C为圆心且与BD相切的圆上,可设P.则(0,1),(2,0),.又,sin1,cos1,2sincos2sin(),其中tan,()max3.【答案】A【变式探究】【2016年高考四川理数】在平面内,定点A,B,C,D满足 =,=-2,动点P,M满足 =1,=,则的最大值是( )(A) (B) (C) (D)【答案】B【解析】甴已知易得.以为原点,直线为轴建立平面直角坐标系,如图所示,则设由已知,得,又,它表示圆上的点与点的距离的平方的,故选B. 【变式探究】在平面直角坐标系xOy中,已知向量a,b,|a|b|1,ab0,点Q满足(ab)曲线CP|acos bcos ,02,区域P|0r|R,rR若C为两段分离的曲线,则()A1rR3 B1r3RCr1R3 D1r3R解析由已知可设a(1,0),b(0,1),P(x,y),则(,),曲线CP|(cos ,sin ),02,即C:x2y21,区域P|0r|R,rR表示圆P1:(x)2(y)2r2与圆P2:(x)2(y)2R2所形成的圆环,如图所示,要使C为两段分离的曲线,只有1rR3. 答案A【举一反三】已知向量a(2,1),b(1,2),若manb(9,8)(m,nR),则mn的值为_解析a(2,1),b(1,2),manb(2mn,m2n)(9,8),即解得故mn253.答案3题型四平面向量的长度与角度问题例4【2017课标1,理13】已知向量a,b的夹角为60,|a|=2,|b|=1,则| a +2 b |= .【答案】【解析】利用如下图形,可以判断出的模长是以2为边长的菱形对角线的长度,所以. 【变式探究】若非零向量a,b满足|a|b|,且(ab)(3a2b),则a与b的夹角为()A. B.C. D【变式探究】对任意向量a,b,下列关系式中不恒成立的是()A|ab|a|b| B|ab|a|b|C(ab)2|ab|2 D(ab)(ab)a2b2解析对于A,由|ab|a|b|cos|a|b|恒成立;对于B,当a,b均为非零向量且方向相反时不成立;对于C、D容易判断恒成立故选B.答案B【举一反三】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三原色课件染发
- 三副知识更新培训课件
- 三分屏剪辑课件
- 小兔子乖乖课件文案
- 小儿高热惊厥病例讨论
- 电子商务领域海垦集团面试题库及备考指导
- 年产150万套益智多彩木制游戏生产线技改项目可行性研究报告模板-立项备案
- 大学生毕业典礼毕业生代表发言稿
- 卓越人才必 备:时间协调面试问题及答案精 编速览
- 高阶职场求职达人必读:池州投资集团面试题目及答案精解
- 棚钢结构施工方案
- GA/T 1132-2014车辆出入口电动栏杆机技术要求
- GA 1800.5-2021电力系统治安反恐防范要求第5部分:太阳能发电企业
- 部编(统编)版-小学语文六年级教科书培训-讲座课件
- 达格列净的疗效与安全课件
- 学校后勤管理工作课件
- 2021年孝感安陆市教师进城考试笔试试题及答案解析
- 沪教版小学二年级上册数学期中整理复习假期练习题单
- 医疗风险管理检查记录表
- 光伏发电项目施工方案及技术措施
- 高职机械制图说课稿市公开课金奖市赛课一等奖课件
评论
0/150
提交评论