已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
武昌区三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设函数,其中,若存在唯一的整数,使得,则的取值范围是( )A B C D11112 如图,已知正方体ABCDA1B1C1D1的棱长为4,点E,F分别是线段AB,C1D1上的动点,点P是上底面A1B1C1D1内一动点,且满足点P到点F的距离等于点P到平面ABB1A1的距离,则当点P运动时,PE的最小值是( )A5B4C4D23 已知命题p:xR,cosxa,下列a的取值能使“p”是真命题的是( )A1B0C1D24 集合的真子集共有( )A个 B个 C个 D个5 袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为( )ABCD6 已知的终边过点,则等于( )A B C-5 D57 设集合A=x|2x4,B=2,1,2,4,则AB=( )A1,2B1,4C1,2D2,48 集合,则,的关系( )A B C D9 已知双曲线C:=1(a0,b0)的左、右焦点分别为F1,F2,过点F1作直线lx轴交双曲线C的渐近线于点A,B若以AB为直径的圆恰过点F2,则该双曲线的离心率为( )ABC2D10下列命题正确的是( )A很小的实数可以构成集合.B集合与集合是同一个集合.C自然数集 中最小的数是.D空集是任何集合的子集.11一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是( )A8cm2B12cm2C16cm2D20cm212已知奇函数是上的增函数,且,则的取值范围是( )A、 B、 C、 D、二、填空题13直线ax2y+2=0与直线x+(a3)y+1=0平行,则实数a的值为 14给出下列四个命题:函数f(x)=12sin2的最小正周期为2;“x24x5=0”的一个必要不充分条件是“x=5”;命题p:xR,tanx=1;命题q:xR,x2x+10,则命题“p(q)”是假命题;函数f(x)=x33x2+1在点(1,f(1)处的切线方程为3x+y2=0其中正确命题的序号是15如图,长方体ABCDA1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,则异面直线A1E与GF所成的角的余弦值是 16不等式的解为17设幂函数的图象经过点,则= 18命题“xR,x22x10”的否定形式是三、解答题19设函数f(x)=ax2+bx+c(a0)为奇函数,其图象在点(1,f(1)处的切线与直线x6y7=0垂直,导函数f(x)的最小值为12(1)求a,b,c的值;(2)求函数f(x)的单调递增区间,并求函数f(x)在1,3上的最大值和最小值20设函数f(x)=lnxax2bx(1)当a=2,b=1时,求函数f(x)的单调区间;(2)令F(x)=f(x)+ax2+bx+(2x3)其图象上任意一点P(x0,y0)处切线的斜率k恒成立,求实数a的取值范围;(3)当a=0,b=1时,方程f(x)=mx在区间1,e2内有唯一实数解,求实数m的取值范围 21在平面直角坐标系xOy中,点B与点A(1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于()求动点P的轨迹方程;()设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得PAB与PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由22已知函数f(x)=2x24x+a,g(x)=logax(a0且a1)(1)若函数f(x)在1,3m上不具有单调性,求实数m的取值范围;(2)若f(1)=g(1)求实数a的值;设t1=f(x),t2=g(x),t3=2x,当x(0,1)时,试比较t1,t2,t3的大小 23(本小题满分13分)设,数列满足:,()若为方程的两个不相等的实根,证明:数列为等比数列;()证明:存在实数,使得对, )24某港口的水深y(米)是时间t(0t24,单位:小时)的函数,下面是每天时间与水深的关系表:t03691215182124y10139.97101310.1710经过长期观测,y=f(t)可近似的看成是函数y=Asint+b(1)根据以上数据,求出y=f(t)的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?武昌区三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】考点:函数导数与不等式1【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令将函数变为两个函数,将题意中的“存在唯一整数,使得在直线的下方”,转化为存在唯一的整数,使得在直线的下方.利用导数可求得函数的极值,由此可求得的取值范围. 2 【答案】 D【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AE=a,D1F=b,0a4,0b4,P(x,y,4),0x4,0y4,则F(0,b,4),E(4,a,0),=(x,by,0),点P到点F的距离等于点P到平面ABB1A1的距离,当E、F分别是AB、C1D1上的中点,P为正方形A1B1C1D1时,PE取最小值,此时,P(2,2,4),E(4,2,0),|PE|min=2故选:D【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识3 【答案】D【解析】解:命题p:xR,cosxa,则a1下列a的取值能使“p”是真命题的是a=2故选;D4 【答案】C【解析】考点:真子集的概念.5 【答案】B【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C63=20种,其中恰有两个球同色C31C41=12种,故恰有两个球同色的概率为P=,故选:B【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基础题6 【答案】B【解析】考点:三角恒等变换7 【答案】A【解析】解:集合A=x|2x4,B=2,1,2,4,则AB=1,2故选:A【点评】本题考查交集的运算法则的应用,是基础题8 【答案】A【解析】试题分析:通过列举可知,所以.考点:两个集合相等、子集19 【答案】D【解析】解:设F1(c,0),F2(c,0),则l的方程为x=c,双曲线的渐近线方程为y=x,所以A(c, c)B(c, c)AB为直径的圆恰过点F2F1是这个圆的圆心AF1=F1F2=2cc=2c,解得b=2a离心率为=故选D【点评】本题考查了双曲线的性质,如焦点坐标、离心率公式10【答案】D【解析】试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项D是正确,故选D.考点:集合的概念;子集的概念.11【答案】B【解析】解:正方体的顶点都在球面上,则球为正方体的外接球,则2=2R,R=,S=4R2=12故选B12【答案】A【解析】考点:函数的性质。二、填空题13【答案】1【解析】【分析】利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a的值【解答】解:直线ax2y+2=0与直线x+(a3)y+1=0平行,解得 a=1故答案为 114【答案】 【解析】解:,T=2,故正确;当x=5时,有x24x5=0,但当x24x5=0时,不能推出x一定等于5,故“x=5”是“x24x5=0”成立的充分不必要条件,故错误;易知命题p为真,因为0,故命题q为真,所以p(q)为假命题,故正确;f(x)=3x26x,f(1)=3,在点(1,f(1)的切线方程为y(1)=3(x1),即3x+y2=0,故正确综上,正确的命题为故答案为15【答案】0【解析】【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线A1E与GF所成的角的余弦值【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,A1(1,0,2),E(0,0,1),G(0,2,1),F(1,1,0),=(1,0,1),=(1,1,1),=1+0+1=0,A1EGF,异面直线A1E与GF所成的角的余弦值为0故答案为:016【答案】x|x1或x0 【解析】解:即即x(x1)0解得x1或x0故答案为x|x1或x0【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法注意不等式的解以解集形式写出17【答案】【解析】试题分析:由题意得考点:幂函数定义18【答案】 【解析】解:因为全称命题的否定是特称命题所以,命题“xR,x22x10”的否定形式是:故答案为:三、解答题19【答案】 【解析】解:(1)f(x)为奇函数,f(x)=f(x),即ax3bx+c=ax3bxc,c=0f(x)=3ax2+b的最小值为12,b=12又直线x6y7=0的斜率为,则f(1)=3a+b=6,得a=2,a=2,b=12,c=0;(2)由(1)知f(x)=2x312x,f(x)=6x212=6(x+)(x),列表如下: x (,) (,) (,+) f(x)+ 0 0+ f(x) 增 极大 减 极小 增所以函数f(x)的单调增区间是(,)和(,+)f(1)=10,f()=8,f(3)=18,f(x)在1,3上的最大值是f(3)=18,最小值是f()=820【答案】 【解析】解:(1)依题意,知f(x)的定义域为(0,+)当a=2,b=1时,f(x)=lnxx2x,f(x)=2x1=令f(x)=0,解得x=当0x时,f(x)0,此时f(x)单调递增;当x时,f(x)0,此时f(x)单调递减所以函数f(x)的单调增区间(0,),函数f(x)的单调减区间(,+)(2)F(x)=lnx+,x2,3,所以k=F(x0)=,在x02,3上恒成立,所以a(x02+x0)max,x02,3当x0=2时,x02+x0取得最大值0所以a0(3)当a=0,b=1时,f(x)=lnx+x,因为方程f(x)=mx在区间1,e2内有唯一实数解,所以lnx+x=mx有唯一实数解m=1+,设g(x)=1+,则g(x)=令g(x)0,得0xe; g(x)0,得xe,g(x)在区间1,e上是增函数,在区间e,e2上是减函数,1 0分g(1)=1,g(e2)=1+=1+,g(e)=1+,所以m=1+,或1m1+ 21【答案】 【解析】解:()因为点B与A(1,1)关于原点O对称,所以点B得坐标为(1,1)设点P的坐标为(x,y)化简得x2+3y2=4(x1)故动点P轨迹方程为x2+3y2=4(x1)()解:若存在点P使得PAB与PMN的面积相等,设点P的坐标为(x0,y0)则因为sinAPB=sinMPN,所以所以=即(3x0)2=|x021|,解得因为x02+3y02=4,所以故存在点P使得PAB与PMN的面积相等,此时点P的坐标为【点评】本题主要考查了轨迹方程、三角形中的几何计算等知识,属于中档题22【答案】 【解析】解:(1)因为抛物线y=2x24x+a开口向上,对称轴为x=1,所以函数f(x)在(,1上单调递减,在1,+)上单调递增,因为函数f(x)在1,3m上不单调,所以3m1,(2分)得,(3分)(2)因为f(1)=g(1),所以2+a=0,(4分)所以实数a的值为2因为t1=f(x)=x22x+1=(x1)2,t2=g(x)=log2x,t3=2x,所以当x(0,1)时,t1(0,1),(7分)t2(,0),(9分)t3(1,2),(11分)所以t2t1t3(12分)【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键23【答案】 【解析】解:证明:, (3分),数列为等比数列 (4分)()证明:设,则由及得,在上递减,(8分)下面用数学归纳法证明:当时,当时,命题成立 (9分)假设当时命题成立,即,那么由在上递减得由得,当时命题也成立, (12分)由知,对一切命题成立,即存在实
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 饮料市场运营合同范本
- 策略性装备租赁手段
- 签订商铺合同保密协议
- 篮球教练兼职合同范本
- 纺织产品采购合同范本
- 缝纫车工劳务合同范本
- 聘用公司会计合同范本
- 股权协议违反劳动合同
- 肥料店铺转让合同范本
- 脱硫石膏处理合同范本
- 红色简约中国英雄人物李大钊课件
- 原位固化法管道修复方案
- (完整版)人教版初中语文文言文大全(原文)
- 班车租赁服务投标方案(技术方案)
- HSK标准教程1-第一课lesson1
- 大学历史学《中国近现代史纲要》说课稿
- 主治医师考试《儿科》第二阶段高频考点含答案
- 2024年中考地理时事热点中考备考资料(材料+试题)含答案
- 商品房买卖协议书(2024版)
- 《BIM建模技术》教案-6创建墙体
- 陶粒回填方案
评论
0/150
提交评论